TY - JOUR A1 - Karamzadeh Toularoud, Nasim A1 - Heimann, Sebastian A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Earthquake source arrays BT - optimal configuration and applications in crustal structure studies JF - Geophysical journal international N2 - A collection of earthquake sources recorded at a single station, under specific conditions, are considered as a source array (SA), that is interpreted as if earthquake sources originate at the station location and are recorded at the source location. Then, array processing methods, that is array beamforming, are applicable to analyse the recorded signals. A possible application is to use source array multiple event techniques to locate and characterize near-source scatterers and structural interfaces. In this work the aim is to facilitate the use of earthquake source arrays by presenting an automatic search algorithm to configure the source array elements. We developed a procedure to search for an optimal source array element distribution given an earthquake catalogue including accurate origin time and hypocentre locations. The objective function of the optimization process can be flexibly defined for each application to ensure the prerequisites (criteria) of making a source array. We formulated four quantitative criteria as subfunctions and used the weighted sum technique to combine them in one single scalar function. The criteria are: (1) to control the accuracy of the slowness vector estimation using the time domain beamforming method, (2) to measure the waveform coherency of the array elements, (3) to select events with lower location error and (4) to select traces with high energy of specific phases, that is, sp- or ps-phases. The proposed procedure is verified using synthetic data as well as real examples for the Vogtland region in Northwest Bohemia. We discussed the possible application of the optimized source arrays to identify the location of scatterers in the velocity model by presenting a synthetic test and an example using real waveforms. KW - location of scatterers KW - optimization KW - source array design Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa002 SN - 0956-540X SN - 1365-246X VL - 221 IS - 1 SP - 352 EP - 370 PB - Oxford Univ. Press CY - Oxford ER - TY - THES A1 - Karamzadeh Toularoud, Nasim T1 - Earthquake source and receiver array optimal configuration T1 - Optimale Konfiguration von Quell- und Empfängerarray für Erdbeben N2 - Seismic receiver arrays have variety of applications in seismology, particularly when the signal enhancement is a prerequisite to detect seismic events, and in situations where installing and maintaining sparse networks are impractical. This thesis has mainly focused on the development of a new approach for seismological source and receiver array design.The proposed approach deals with the array design task as an optimization problem. The criteria and prerequisite constraints in array design task are integrated in objective function definition and evaluation of a optimization process. Three cases are covered in this thesis: (1) a 2-D receiver array geometry optimization, (2) a 3-D source array optimization, and (3) an array application to monitor microseismic data, where the effect of different types of noise are evaluated. A flexible receiver array design framework implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints, e.g. land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. The use of synthetic array beamforming as an array design criteria is suggested. The framework is customized by designing a 2-D small scale receiver array to monitor earthquake swarm activity in northwest Bohemia/ Vogtland in central Europe. Two sub-functions are defined to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space, and the other to reduce the event's mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the sub-functions into one single scalar objective function to use in the optimization process. The idea of optimal array is employed to design a 3-D source array, given a well-located catalog of events. The conditions to make source arrays are formulated in four objective functions and a weighted sum technique is used to combine them in one single scalar function. The criteria are: (1) accurate slowness vector estimation, (2) high waveform coherency, (3) low location error and (4) high energy of coda phases. The method is evaluated by two experiments, (1) a synthetic test using realistic synthetic seismograms, (2) using real seismograms, and for each case optimized SA elements are configured using the data from the Vogtland area. The location of a possible scatterer in the velocity model, that makes the converted/reflected phases, e.g. sp-phases, is retrieved by a grid search method using the optimized SA. The accuracy of the approach and the obtained results demonstrated that the method is applicable to study the crustal structure and the location of crustal scatterers when the strong converted phases are observed in the data and a well-located catalog is available. Small aperture arrays are employed in seismology for a variety of applications, ranging from pure event detection to monitor and study of microcosmic activities. The monitoring of microseismicity during temporary human activities is often difficult, as the signal-to-noise ratio is very low and noise is strongly increased during the operation. The combination of small aperture seismic arrays with shallow borehole sensors offers a solution. We tested this monitoring approach at two different sites, (1) accompanying a fracking experiment in sedimentary shale at 4~km depth, and (2) above a gas field under depletion. Arrays recordings are compared with recordings available from shallow borehole sensors and examples of detection and location performance of the array are given. The effect of different types of noise at array and borehole stations are compared and discussed. N2 - Seismische Arrays haben eine Vielzahl von Anwendungen in der Seismologie, insbesondere wenn die Signalverbesserung eine Voraussetzung ist für die seismische Ereignisse erkennen, und in Situationen, in denen die Installation und Wartung spärlicher Netzwerke ist unpraktisch. Diese Arbeit hat sich vor allem auf die Entwicklung eines neuen Ansatzes für seismologische Quellen und Empfänger-Array-Design konzentriert. Der vorgeschlagene Ansatz beschäftigt sich mit der Array-Design-Aufgabe als Optimierungsproblem. Die notwendigen Kriterien und Randbedingungen, die für die seismologische Array-Design-Aufgabe wichtig sind, werden in die objektive Funktionsdefinition und Bewertung eines Optimierungsprozesses integriert. In dieser Arbeit werden drei Fälle behandelt. (1) eine 2-D-Empfänger-Array-Geometrieoptimierung, (2) eine 3D-Quellfeldoptimierung, und (3) eine Array-Anwendung zum Überwachen mikroseismischer Daten, wobei die Auswirkungen verschiedener Arten von Lärm werden bewertet. Ein flexibles Empfänger-Array-Design-Framework wird eingeführt, das ein anpassbares Szenario-Modellierungs- und Optimierungsschema unter Verwendung synthetischer Seismogramme implementiert. Die Verwendung synthetischer Seismogramme zur Bewertung der Array-Leistung ermöglicht es, zusätzliche Einschränkungen, wie z.B. Landbesitz, zu berücksichtigen, standortspezifische Lärmpegel oder Eigenschaften der seismischen Quellen unter Berücksichtigung von Untersuchung. Die Verwendung von synthetischem Array-Strahlformung als Array-Design-Kriterium wird vorgeschlagen. Das Array-Design-Framework wird durch die Entwicklung eines 2-D-Kleinempfänger-Arrays zur Überwachung der Erdbebenschwarmaktivität im Vogtland in Mitteleuropa angepasst. Es werden zwei Teilfunktionen definiert, um die Genauigkeit der horizontalen Langsamkeitsschätzung zu überprüfen. Eine zur Unterdrückung von Aliasing-Effekten aufgrund möglicher Nebenkeulen der synthetischen Strahlformung, berechnet im horizontalen Langsamkeitsraum, und zum anderen, um die Fehlstellung des Ereignisses durch eine Fehlberechnung des horizontalen Langsamkeitsvektors zu reduzieren. Anschliessend wird eine Gewichtungstechnik angewendet, um die Kombination von die Unterfunktionen zu einer einzigen skalaren Zielfunktion zusammenfassen, die in der Optimierungsprozess verwendet werden kann. Die Idee des Array Optimal Design wird verwendet, um ein 3-D Source Array zu entwerfen, das einen gut lokalisierten Katalog von Erdbebenereignissen enthält. Die Bedingungen für die Herstellung von Quellarrays werden in vier Zielfunktionen formuliert, und eine gewichtete Summentechnik wird verwendet, um sie in einer einzigen skalaren Funktion zu kombinieren. Die Kriterien sind: (1) genaue Langsamkeitsvektorschätzung, (2) hohe Wellenform-Kohärenz, (3) niedriger Ortsfehler und (4) bis hohe Energie der Coda-Phasen. Die Methode wird durch zwei Experimente bewertet, (1) ein synthetischer Test mit realistischen synthetischen Seismogrammen, (2) mit realen Seismogrammen und optimierte SA-Elemente werden für jeden Fall unter Verwendung der Daten aus dem Vogtland gefunden. Die Position eines möglichen Streuers im Geschwindigkeitsmodell, der die konvertierten/reflektierten Phasen, z.B. sp-Phasen, erzeugt, wird durch ein Rastersuchverfahren mit dem optimierten SA ermittelt. Die Genauigkeit des Ansatzes und die erhaltenen Ergebnisse sind überzeugend, dass die Methode anwendbar ist, um die Krustenstruktur und die Position von Krustalstreuern zu untersuchen, wenn die stark konvertierten Phasen in den Daten beobachtet werden und ein gut lokalisierter Katalog verfügbar ist. Die Überwachung der Mikroseismizität bei solchen temporären menschlichen Aktivitäten ist oft schwierig, da der Signal-Rausch-Verhältnis sehr niedrig ist und das Rauschen während des Betriebs stark erhöht wird. Die Kombination von seismischen Arrays mit kleiner Apertur und flachen Bohrlochsensoren bietet eine Lösung. Wir haben diesen Überwachungsansatz an zwei verschiedenen Standorten getestet. (1) Begleiten eines Fracking-Experiments in sedimentärem Schiefer in 4 km Tiefe und (2) über einem Gasfeld unter Erschöpfung. Die Aufzeichnungen von Arrays werden mit den Aufzeichnungen von flachen Bohrlochsensoren verglichen, und es werden Beispiele für die Detektions- und Standortleistung der Arrays gegeben. Die Auswirkungen verschiedener Arten von Lärm an Array- und Bohrlochstationen werden verglichen und diskutiert. KW - seismic array KW - earthquake source array KW - array design KW - optimal array configuration KW - source array optimal design KW - scatterer location KW - scattered phases KW - seismicity modelling KW - synthetic array beam power KW - Array-Entwurf KW - Erdbebenquellen-Array KW - optimale Array-Konfiguration KW - gestreute Phasen KW - Standort des Streuers KW - seismisches Array KW - Seismizitätsmodellierung KW - Quell-Array optimales Design KW - synthetische Array-Strahlleistung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459828 ER -