TY - GEN A1 - Stuetz, Wolfgang A1 - Weber, Daniela A1 - Dollé, Martijn E. T. A1 - Jansen, Eugène A1 - Grubeck-Loebenstein, Beatrix A1 - Fiegl, Simone A1 - Toussaint, Olivier A1 - Bernhardt, Juergen A1 - Gonos, Efstathios S. A1 - Franceschi, Claudio A1 - Sikora, Ewa A1 - Moreno-Villanueva, María A1 - Breusing, Nicolle A1 - Grune, Tilman A1 - Bürkle, Alexander T1 - Plasma carotenoids, tocopherols, and retinol in the age-stratified (35–74 years) general population BT - a cross-sectional study in six European countries T2 - Nutrients N2 - Blood micronutrient status may change with age. We analyzed plasma carotenoids, α-/γ-tocopherol, and retinol and their associations with age, demographic characteristics, and dietary habits (assessed by a short food frequency questionnaire) in a cross-sectional study of 2118 women and men (age-stratified from 35 to 74 years) of the general population from six European countries. Higher age was associated with lower lycopene and α-/β-carotene and higher β-cryptoxanthin, lutein, zeaxanthin, α-/γ-tocopherol, and retinol levels. Significant correlations with age were observed for lycopene (r = −0.248), α-tocopherol (r = 0.208), α-carotene (r = −0.112), and β-cryptoxanthin (r = 0.125; all p < 0.001). Age was inversely associated with lycopene (−6.5% per five-year age increase) and this association remained in the multiple regression model with the significant predictors (covariables) being country, season, cholesterol, gender, smoking status, body mass index (BMI (kg/m2)), and dietary habits. The positive association of α-tocopherol with age remained when all covariates including cholesterol and use of vitamin supplements were included (1.7% vs. 2.4% per five-year age increase). The association of higher β-cryptoxanthin with higher age was no longer statistically significant after adjustment for fruit consumption, whereas the inverse association of α-carotene with age remained in the fully adjusted multivariable model (−4.8% vs. −3.8% per five-year age increase). We conclude from our study that age is an independent predictor of plasma lycopene, α-tocopherol, and α-carotene. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 449 KW - carotenoids KW - plasma KW - age KW - Europe KW - micronutrient KW - lycopene KW - retinol KW - tocopherols Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407659 ER - TY - GEN A1 - Errard, Audrey A1 - Ulrichs, Christian A1 - Kühne, Stefan A1 - Mewis, Inga A1 - Mishig, Narantuya A1 - Maul, Ronald A1 - Drungowski, Mario A1 - Parolin, Pia A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s)-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae T2 - Frontiers in plant science N2 - The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanurn lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest -predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and alpha-terpinene which were induced by pest -predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 454 KW - carotenoids KW - plant volatiles KW - Chrysopidae KW - Solanaceae KW - multiple-pest infestation KW - tritrophic system KW - Twister TM KW - biological pest control Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407913 ER - TY - JOUR A1 - Errard, Audrey A1 - Ulrichs, Christian A1 - Kühne, Stefan A1 - Mewis, Inga A1 - Mishig, Narantuya A1 - Maul, Ronald A1 - Drungowski, Mario A1 - Parolin, Pia A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae JF - Frontiers in plant science N2 - The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanurn lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest -predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and alpha-terpinene which were induced by pest -predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry. KW - carotenoids KW - plant volatiles KW - Chrysopidae KW - Solanaceae KW - multiple-pest infestation KW - tritrophic system KW - Twister (TM) KW - biological pest control Y1 - 2016 U6 - https://doi.org/10.3389/fpls.2016.01256 SN - 1664-462X VL - 7 SP - 456 EP - + PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Islam, Khan Shaiful A1 - Khalil, Mahmoud A1 - Männer, K. A1 - Raila, Jens A1 - Rawel, Harshadrai Manilal A1 - Zentek, J. A1 - Schweigert, Florian J. T1 - Effect of dietary alpha-tocopherol on the bioavailability of lutein in laying hen JF - Journal of animal physiology and animal nutrition N2 - Lutein and its isomer zeaxanthin have gained considerable interest as possible nutritional ingredient in the prevention of age-related macular degeneration (AMD) in humans. Egg yolk is a rich source of these carotenoids. As an oxidative sensitive component, antioxidants such as -tocopherol (T) might contribute to an improved accumulation in egg yolk. To test this, chickens were fed lutein esters (LE) with and without -tocopherol as an antioxidant. After depletion on a wheat-soya bean-based lutein-poor diet for 21days, laying hens (n=42) were equally divided into three groups and fed the following diets for 21days: control (basal diet), a LE group (40mg LE/kg feed) and LE+T group (40mg LE plus 100mg T/kg feed). Eggs and blood were collected periodically. Carotenoids and -tocopherol in yolk and blood plasma were determined by HPLC. Egg yolk was also analysed for total carotenoids using a one-step spectrophotometric method (iCheck(())). Lutein, zeaxanthin, -tocopherol and total carotenoids in egg yolk were highest after 14days of feeding and decreased slightly afterwards. At the end of the trial, eggs of LE+T group contained higher amount of lutein (13.72), zeaxanthin (0.65), -tocopherol (297.40) and total carotenoids (21.6) compared to the LE group (10.96, 0.55, 205.20 and 18.0mg/kg, respectively, p<0.05). Blood plasma values of LE+T group contain higher lutein (1.3), zeaxanthin (0.06) and tocopherol (20.1) compared to LE group (1.02, 0.04 and 14.90mg/l, respectively, p<0.05). In conclusion, dietary -tocopherol enhances bioavailability of lutein reflecting higher content in egg yolk and blood plasma. Improved bioavailability might be due to increased absorption of lutein in the presence of tocopherol and/or a greater stability of lutein/zeaxanthin due to the presence of -tocopherol as an antioxidant. KW - carotenoids KW - tocopherol KW - egg yolk KW - bioavailability KW - HPLC KW - iCheck Y1 - 2016 U6 - https://doi.org/10.1111/jpn.12464 SN - 0931-2439 SN - 1439-0396 VL - 100 SP - 868 EP - 875 PB - Wiley-Blackwell CY - Hoboken ER -