TY - JOUR A1 - Filimon, Marlena A1 - Kopf, Ilona A1 - Ballout, Fuad A1 - Schmidt, Dietrich A. A1 - Bruendermann, Erik A1 - Rühe, Jürgen A1 - Santer, Svetlana A1 - Havenith, Martina T1 - Smart polymer surfaces : mapping chemical landscapes on the nanometre scale N2 - We show that Scattering Infrared Near-field Microscopy (SNIM) allows chemical mapping of polymer monolayers that can serve as designed nanostructured surfaces with specific surface chemistry properties on a nm scale. Using s- SNIM a minimum volume of 100 nm x 100 nm x 15 nm is sufficient for a recording of a "chemical'' IR signature which corresponds to an enhancement of at least four orders of magnitudes compared to conventional FT-IR microscopy. We could prove that even in cases where it is essentially difficult to distinguish between distinct polymer compositions based solely on topography, nanophase separated polymers can be clearly distinguished according to their characteristic near-field IR response. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/sm/index.asp U6 - https://doi.org/10.1039/C0sm00098a SN - 1744-683X ER - TY - JOUR A1 - Di Florio, Giuseppe A1 - Bruendermann, Erik A1 - Yadavalli, Nataraja Sekhar A1 - Santer, Svetlana A1 - Havenith, Martina T1 - Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films JF - Soft matter N2 - We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy. Y1 - 2014 U6 - https://doi.org/10.1039/c3sm51787j SN - 1744-683X SN - 1744-6848 VL - 10 IS - 10 SP - 1544 EP - 1554 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Filimon, Marlena A1 - Kopf, Ilona A1 - Schmidt, Dietrich A. A1 - Bruendermann, Erik A1 - Rühe, Jürgen A1 - Santer, Svetlana A1 - Havenith, Martina T1 - Local chemical composition of nanophase-separated polymer brushes JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Using scattering scanning nearfield infrared microscopy (s-SNIM), we have imaged the nanoscale phase separation of mixed polystyrene-poly(methyl methacrylate) (PS-PMMA) brushes and investigated changes in the top layer as a function of solvent exposure. We deduce that the top-layer of the mixed brushes is composed primarily of PMMA after exposure to acetone, while after exposure to toluene this changes to PS. Access to simultaneously measured topographic and chemical information allows direct correlation of the chemical morphology of the sample with topographic information. Our results demonstrate the potential of s-SNIM for chemical mapping based on distinct infrared absorption properties of polymers with a high spatial resolution of 80 nm x 80 nm. Y1 - 2011 U6 - https://doi.org/10.1039/c0cp02756a SN - 1463-9076 VL - 13 IS - 24 SP - 11620 EP - 11626 PB - Royal Society of Chemistry CY - Cambridge ER -