TY - JOUR A1 - Mehr, Fatemeh Naderi A1 - Grigoriev, Dmitry A1 - Heaton, Rebecca A1 - Baptiste, Joshua A1 - Stace, Anthony J. A1 - Puretskiy, Nikolay A1 - Besley, Elena A1 - Böker, Alexander T1 - Self-assembly behavior of oppositely charged inverse bipatchy microcolloids JF - Small : nano micro N2 - A directed attractive interaction between predefined "patchy" sites on the surfaces of anisotropic microcolloids can provide them with the ability to self-assemble in a controlled manner to build target structures of increased complexity. An important step toward the controlled formation of a desired superstructure is to identify reversible electrostatic interactions between patches which allow them to align with one another. The formation of bipatchy particles with two oppositely charged patches fabricated using sandwich microcontact printing is reported. These particles spontaneously self-aggregate in solution, where a diversity of short and long chains of bipatchy particles with different shapes, such as branched, bent, and linear, are formed. Calculations show that chain formation is driven by a combination of attractive electrostatic interactions between oppositely charged patches and the charge-induced polarization of interacting particles. KW - electrostatic interactions KW - patchy particles KW - polyelectrolyte inks KW - sandwich microcontact printing KW - self-assembly Y1 - 2020 U6 - https://doi.org/10.1002/smll.202000442 SN - 1613-6810 SN - 1613-6829 VL - 16 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hornemann, Andrea A1 - Eichert, Diane Madeleine A1 - Hoehl, Arne A1 - Tiersch, Brigitte A1 - Ulm, Gerhard A1 - Ryadnov, Maxim G. A1 - Beckhoff, Burkhard T1 - Investigating Membrane-Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Far-Infrared Spectroscopy JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Synchrotron radiation-based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio-molecular phenomena including folding-mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near-THz 400-40 cm(-1) range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature-dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane-induced and folding-mediated activity of AMPs. The far-FTIR study offers a direct and information-rich probe of membrane-related antimicrobial interactions. KW - antimicrobial peptides KW - electrostatic interactions KW - IR spectroscopy KW - phospholipid membranes KW - protein folding Y1 - 2022 U6 - https://doi.org/10.1002/cphc.202100815 SN - 1439-4235 SN - 1439-7641 VL - 23 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Megow, Jörg T1 - How Van der Waals Interactions Influence the Absorption Spectra of Pheophorbide a Complexes: A Mixed Quantum-Classical Study JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates. KW - dispersion KW - electrostatic interactions KW - mixed quantum-classical methodology KW - optical spectra KW - supramolecular chemistry Y1 - 2015 U6 - https://doi.org/10.1002/cphc.201500326 SN - 1439-4235 SN - 1439-7641 VL - 16 IS - 14 SP - 3101 EP - 3107 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces: the nonlinear Poisson-Boltzmann approach JF - NEW JOURNAL OF PHYSICS N2 - We study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces-are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-Huckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-Huckel result, such that the required critical surface charge density for polyelectrolyte adsorption sigma(c) increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical-chemical and biophysical systems. KW - polyelectrolyte adsorption KW - electrostatic interactions KW - critical phenomena KW - Debye screening Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/8/083037 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces BT - the nonlinear Poisson–Boltzmann approach JF - New journal of physics : the open-access journal for physics N2 - We study the adsorption–desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition—demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces—are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye–Hückel approximation is often not feasible and the nonlinear Poisson–Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson–Boltzmann equation is smaller than the Debye–Hückel result, such that the required critical surface charge density for polyelectrolyte adsorption σc increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical–chemical and biophysical systems. KW - polyelectrolyte adsorption KW - electrostatic interactions KW - critical phenomena KW - Debye screening Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/8/083037 SN - 1367-2630 VL - 18 PB - IOP Publ. CY - London ER - TY - GEN A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces BT - the nonlinear Poisson–Boltzmann approach N2 - We study the adsorption–desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition—demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces—are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye–Hückel approximation is often not feasible and the nonlinear Poisson–Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson–Boltzmann equation is smaller than the Debye–Hückel result, such that the required critical surface charge density for polyelectrolyte adsorption σc increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical–chemical and biophysical systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 292 KW - polyelectrolyte adsorption KW - electrostatic interactions KW - critical phenomena KW - Debye screening Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100295 ER -