TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Lupker, Maarten A1 - Haghipour, Negar A1 - Märki, Lena A1 - Sachse, Dirk T1 - Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates. KW - particulate organic carbon KW - Himalaya KW - rivers KW - carbon cycle KW - stable KW - isotopes KW - erosion KW - end-member mixing Y1 - 2020 U6 - https://doi.org/10.1016/j.gca.2020.07.003 SN - 0016-7037 VL - 286 SP - 159 EP - 176 PB - Elsevier CY - New York [u.a.] ER - TY - JOUR A1 - Musolff, Andreas A1 - Selle, Benny A1 - Buttner, Olaf A1 - Opitz, Michael A1 - Tittel, Jörg T1 - Unexpected release of phosphate and organic carbon to streams linked to declining nitrogen depositions JF - Global change biology N2 - Reductions in emissions have successfully led to a regional decline in atmospheric nitrogen depositions over the past 20 years. By analyzing long-term data from 110 mountainous streams draining into German drinking water reservoirs, nitrate concentrations indeed declined in the majority of catchments. Furthermore, our meta-analysis indicates that the declining nitrate levels are linked to the release of dissolved iron to streams likely due to a reductive dissolution of iron(III) minerals in riparian wetland soils. This dissolution process mobilized adsorbed compounds, such as phosphate, dissolved organic carbon and arsenic, resulting in concentration increases in the streams and higher inputs to receiving drinking water reservoirs. Reductive mobilization was most significant in catchments with stream nitrate concentrations < 6 mg L-1. Here, nitrate, as a competing electron acceptor, was too low in concentration to inhibit microbial iron(III) reduction. Consequently, observed trends were strongest in forested catchments, where nitrate concentrations were unaffected by agricultural and urban sources and which were therefore sensitive to reductions of atmospheric nitrogen depositions. We conclude that there is strong evidence that the decline in nitrogen deposition toward pre-industrial conditions lowers the redox buffer in riparian soils, destabilizing formerly fixed problematic compounds, and results in serious implications for water quality. KW - atmospheric deposition KW - carbon cycle KW - nitrogen biogeochemistry KW - organic matter KW - riparian zone KW - streamwater chemistry Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13498 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 1891 EP - 1901 PB - Wiley CY - Hoboken ER - TY - THES A1 - Schröder, Birgit Eva T1 - Spatial and temporal dynamics of the terrestrial carbon cycle : assimilation of two decades of optical satellite data into a process-based global vegetation model T1 - Räumliche und zeitliche Dynamik des terrestrischen Kohlenstoffhaushaltes anhand der Assimilation von 20 Jahren optischer Satellitendaten in ein prozessbasiertes dynamisches globales Vegetationsmodell (DGVM) N2 - This PhD thesis presents the spatio-temporal distribution of terrestrial carbon fluxes for the time period of 1982 to 2002 simulated by a combination of the process-based dynamic global vegetation model LPJ and a 21-year time series of global AVHRR-fPAR data (fPAR – fraction of photosynthetically active radiation). Assimilation of the satellite data into the model allows improved simulations of carbon fluxes on global as well as on regional scales. As it is based on observed data and includes agricultural regions, the model combined with satellite data produces more realistic carbon fluxes of net primary production (NPP), soil respiration, carbon released by fire and the net land-atmosphere flux than the potential vegetation model. It also produces a good fit to the interannual variability of the CO2 growth rate. Compared to the original model, the model with satellite data constraint produces generally smaller carbon fluxes than the purely climate-based stand-alone simulation of potential natural vegetation, now comparing better to literature estimates. The lower net fluxes are a result of a combination of several effects: reduction in vegetation cover, consideration of human influence and agricultural areas, an improved seasonality, changes in vegetation distribution and species composition. This study presents a way to assess terrestrial carbon fluxes and elucidates the processes contributing to interannual variability of the terrestrial carbon exchange. Process-based terrestrial modelling and satellite-observed vegetation data are successfully combined to improve estimates of vegetation carbon fluxes and stocks. As net ecosystem exchange is the most interesting and most sensitive factor in carbon cycle modelling and highly uncertain, the presented results complementary contribute to the current knowledge, supporting the understanding of the terrestrial carbon budget. N2 - In der vorliegenden Arbeit wird anhand der Kombination eines dynamischen globalen Vegetationsmodells mit einer Zeitreihe von 21 Jahren optischer Satellitendaten eine realistische Abschätzung der terrestrischen Quellen und Senken von CO2 ermöglicht. Grundlage des hier vorgestellten neuen Modells stellt das dynamische globale Vegetationsmodell LPJ dar, ein prozessorientiertes Vegetationsmodell, das basierend auf ökophysiologischen Grundlagen die Vegetationsverteilung und -dynamik, Störungen (z.B. Feuer) und den Kohlenstoff- sowie den Wasserkreislauf modelliert. Die Kopplung des LPJ-DGVM erfolgte mit einer Zeitreihe globaler AVHRR-fPAR Daten (fPAR – Anteil photosynthetisch aktiver Strahlung), für den Zeitraum 1982 bis 2002 in einer räumlichen Auflösung von 0.5°. Als Ergebnis liegt nun eine globale raum-zeitliche Verteilung aller relevanten Kohlenstoffflüsse vor: Nettoprimärproduktion, Bodenrespiration, Nettoökosystemproduktion, durch Feuer und Ernte emittierter Kohlenstoff, sowie der in Biomasse und Boden gespeicherte Kohlenstoff. Verglichen mit dem Originalmodell haben sich durch die Einspeisung der Satellitendaten alle relevanten Kohlenstoffkomponenten verringert und zeigen nun bessere Übereinstimmung mit Literaturwerten. Die geringeren Kohlenstoffflüsse resultieren aus einer Kombination verschiedener Effekte: geringere Vegetationsbedeckung, Berücksichtigung der landwirtschaftlichen Nutzfläche, realistischere Abbildung der Saisonalität, Veränderung der Vegetationsverteilung und Verschiebung der Artenzusammensetzung. Die globalen Kohlenstoffflüsse werden mit dem vorgestellten Modell realistischer abgebildet als mit Ansätzen, die nur die potentiell natürliche Vegetation simulieren. Insbesondere die Quellen- und Senkendynamik unterliegt vielfältigen Prozessen, die mit einem Modell, dass auch die Bodenrespiration prozessorientiert berücksichtigt, verlässlich geschätzt wird. KW - Vegetationsmodell KW - Kohlenstoffmodell KW - DGVM KW - LPJ KW - Kohlenstoffhaushalt KW - vegetation model KW - carbon cycle KW - DGVM KW - LPJ KW - global change Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17596 ER - TY - JOUR A1 - Melchert, Jan Olaf A1 - Wischhöfer, Philipp A1 - Knoblauch, Christian A1 - Eckhardt, Tim A1 - Liebner, Susanne A1 - Rethemeyer, Janet T1 - Sources of CO2 Produced in Freshly Thawed Pleistocene-Age Yedoma Permafrost JF - Frontiers in Earth Science N2 - The release of greenhouse gases from the large organic carbon stock in permafrost deposits in the circumarctic regions may accelerate global warming upon thaw. The extent of this positive climate feedback is thought to be largely controlled by the microbial degradability of the organic matter preserved in these sediments. In addition, weathering and oxidation processes may release inorganic carbon preserved in permafrost sediments as CO2, which is generally not accounted for. We used C-13 and C-14 analysis and isotopic mass balances to differentiate and quantify organic and inorganic carbon released as CO2 in the field from an active retrogressive thaw slump of Pleistocene-age Yedoma and during a 1.5-years incubation experiment. The results reveal that the dominant source of the CO2 released from freshly thawed Yedoma exposed as thaw mound is Pleistocene-age organic matter (48-80%) and to a lesser extent modern organic substrate (3-34%). A significant portion of the CO2 originated from inorganic carbon in the Yedoma (17-26%). The mixing of young, active layer material with Yedoma at a site on the slump floor led to the preferential mineralization of this young organic carbon source. Admixtures of younger organic substrates in the Yedoma thaw mound were small and thus rapidly consumed as shown by lower contributions to the CO2 produced during few weeks of aerobic incubation at 4 degrees C corresponding to approximately one thaw season. Future CO2 fluxes from the freshly thawed Yedoma will contain higher proportions of ancient inorganic (22%) and organic carbon (61-78%) as suggested by the results at the end, after 1.5 years of incubation. The increasing contribution of inorganic carbon during the incubation is favored by the accumulation of organic acids from microbial organic matter degradation resulting in lower pH values and, in consequence, in inorganic carbon dissolution. Because part of the inorganic carbon pool is assumed to be of pedogenic origin, these emissions would ultimately not alter carbon budgets. The results of this study highlight the preferential degradation of younger organic substrates in freshly thawed Yedoma, if available, and a substantial release of CO2 from inorganic sources. KW - yedoma ice complex KW - permafost KW - carbon cycle KW - climat change KW - thermokarst KW - radiocarbon KW - greenhouse gas Y1 - 2022 U6 - https://doi.org/10.3389/feart.2021.737237 SN - 2296-6463 VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Kühn, Michael A1 - Li, Qi A1 - Nakaten, Natalie Christine A1 - Kempka, Thomas T1 - Integrated subsurface gas storage of CO2 and CH4 offers capacity and state-of-the-art technology for energy storage in China T2 - Energy procedia N2 - Integration and development of the energy supply in China and worldwide is a challenge for the years to come. The innovative idea presented here is based on an extension of the “power-to-gas-to-power” technology by establishing a closed carbon cycle. It is an implementation of a low-carbon energy system based on carbon dioxide capture and storage (CCS) to store and reuse wind and solar energy. The Chenjiacun storage project in China compares well with the German case study for the towns Potsdam and Brandenburg/Havel in the Federal State of Brandenburg based on the Ketzin pilot site for CCS. KW - gas storage KW - carbon dioxide KW - methane KW - hydrogen KW - renewable energy KW - carbon cycle Y1 - 2017 U6 - https://doi.org/10.1016/j.egypro.2017.08.039 SN - 1876-6102 VL - 125 SP - 14 EP - 18 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tanski, George A1 - Couture, Nicole A1 - Lantuit, Hugues A1 - Eulenburg, Antje A1 - Fritz, Michael T1 - Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean JF - Global biogeochemical cycles N2 - Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0mgL(-1) with an estimated stock of 13.63.0gm(-3) along the YC. An annual DOC flux of 54.90.9Mgyr(-1) was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent. KW - Arctic KW - permafrost KW - coastal erosion KW - biogeochemistry KW - carbon cycle Y1 - 2016 U6 - https://doi.org/10.1002/2015GB005337 SN - 0886-6236 SN - 1944-9224 VL - 30 SP - 1054 EP - 1068 PB - American Geophysical Union CY - Cambridge ER - TY - JOUR A1 - Frank, Dorothe A. A1 - Reichstein, Markus A1 - Bahn, Michael A1 - Thonicke, Kirsten A1 - Frank, David A1 - Mahecha, Miguel D. A1 - Smith, Pete A1 - Van der Velde, Marijn A1 - Vicca, Sara A1 - Babst, Flurin A1 - Beer, Christian A1 - Buchmann, Nina A1 - Canadell, Josep G. A1 - Ciais, Philippe A1 - Cramer, Wolfgang A1 - Ibrom, Andreas A1 - Miglietta, Franco A1 - Poulter, Ben A1 - Rammig, Anja A1 - Seneviratne, Sonia I. A1 - Walz, Ariane A1 - Wattenbach, Martin A1 - Zavala, Miguel A. A1 - Zscheischler, Jakob T1 - Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts JF - Global change biology N2 - Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks. KW - carbon cycle KW - climate change KW - climate extremes KW - climate variability KW - disturbance KW - terrestrial ecosystems Y1 - 2015 U6 - https://doi.org/10.1111/gcb.12916 SN - 1354-1013 SN - 1365-2486 VL - 21 IS - 8 SP - 2861 EP - 2880 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hoffmann, Bernd A1 - Feakins, Sarah J. A1 - Bookhagen, Bodo A1 - Olen, Stephanie M. A1 - Adhikari, Danda P. A1 - Mainali, Janardan A1 - Sachse, Dirk T1 - Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal JF - Earth & planetary science letters KW - plant wax biomarker KW - leaf wax delta D KW - carbon cycle KW - remote sensing KW - erosion Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.07.008 SN - 0012-821X SN - 1385-013X VL - 452 SP - 104 EP - 114 PB - Elsevier CY - Amsterdam ER -