TY - THES A1 - Hakimhashemi, Amir Hossein T1 - Time-dependent occurrence rates of large earthquakes in the Dead Sea fault zone and applications to probabilistic seismic hazard assessments T1 - Zeitabhängige Auftretensrate großer Erdbeben entlang der Tote-Meer-Störungszone und ihre Einbeziehung in eine probabilistische seismische Gefährdungseinschätzung N2 - Die relativ hohe seismische Aktivität der Tote-Meer-Störungszone (Dead Sea Fault Zone - DSFZ) ist mit einem hohen Gefahrenpotential verbunden, welches zu einem erheblichen Erdbebenrisiko für die Ballungszentren in den Ländern Syrien, Libanon, Palästina, Jordanien und Israel führt. Eine Vielzahl massiver, zerstörerischer Erdbeben hat sich in diesem Raum in den letzten zwei Jahrtausenden ereignet. Ihre Wiederholungsrate zeigt Anzeichen für eine zeitliche Abhängigkeit, insbesondere wenn lange Zeiträume in Betracht gezogen werden. Die Berücksichtigung der zeitlichen Abhängigkeit des Auftretens von Erdbeben ist für eine realistische seismische Gefährdungseinschätzung von großer Bedeutung. Ziel der vorliegenden Arbeit ist es, anhand des zeitabhängigen Auftretens von Erdbeben eine robuste wahrscheinlichkeitstheoretische seismische Gefährdungseinschätzung am Beispiel der DSFZ zu entwickeln. Mittels dieser Methode soll die zeitliche Abhängigkeit des Auftretens von großen Erdbeben (Mw ≥ 6) untersucht und somit eine Gefährdungseinschätzung für das Untersuchungsgebiet getroffen werden. Primär gilt es zu prüfen, ob das Auftreten von großen Erdbeben tatsächlich einer zeitlichen Abhängigkeit unterliegt und wenn ja, inwiefern diese bestimmt werden kann. Zu diesem Zweck werden insgesamt vier zeitabhängige statistische Verteilungen (Weibull, Gamma, Lognormal und Brownian Passage Time (BPT)) sowie die zeitunabhängige Exponentialverteilung (Poisson-Prozess) getestet. Zur Abschätzung der jeweiligen Modellparameter wird eine modifizierte Methode der gewichteten Maximum-Likelihood-Schätzung (MLE) verwendet. Um einzuschätzen, ob die Wiederholungsrate von Erdbeben einer unimodalen oder multimodalen Form folgt, wird ein nichtparametrischer Bootstrap-Test für Multimodalität durchgeführt. Im Falle einer multimodalen Form wird neben der MLE zusätzlich eine Erwartungsmaximierungsmethode (EM) herangezogen. Zur Auswahl des am besten geeigneten Modells wird zum einem das Bayesschen Informationskriterium (BIC) und zum anderen der modifizierte Kolmogorow-Smirnow-Goodness-of-Fit-Test angewendet. Abschließend werden mittels der Bootstrap-Methode die Konfidenzintervalle der geschätzten Parameter berechnet. Als Datengrundlage werden Erdbeben mit Mw ≥ 6 seit dem Jahre 300 n. Chr. herangezogen. Das Untersuchungsgebiet erstreckt sich von 29.5° N bis 37° N und umfasst ein ca. 40 km breites Gebiet entlang der DSFZ. Aufgrund der seismotektonischen Situation im Untersuchungsgebiet wird zwischen einer südlichen, zentralen und nördlichen Subzone unterschieden. Dabei kann die südliche Subzone aus Mangel an Daten nicht für die Analysen herangezogen werden. Die Ergebnisse für die zentrale Subzone zeigen keinen signifikanten multimodalen Verlauf der Wiederholungsrate von Erdbeben. Des Weiteren ist kein signifikanter Unterschied zwischen den zeitabhängigen und dem zeitunabhängigem Modell zu verzeichnen. Da das zeitunabhängige Modell vergleichsweise einfach interpretierbar ist, wird die Wiederholungsrate von Erdbeben in dieser Subzone unter Annahme der Exponentialverteilungs-Hypothese abgeschätzt. Sie wird demnach als zeitunabhängig betrachtet und beträgt 9.72 * 10-3 Erdbeben (mit Mw ≥ 6) pro Jahr. Einen besonderen Fall stellt die nördliche Subzone dar. In diesem Gebiet tritt im Durchschnitt alle 51 Jahre ein massives Erdbeben (Mw ≥ 6) auf. Das letzte Erdbeben dieser Größe ereignete sich 1872 und liegt somit bereits 137 Jahre zurück. Somit ist in diesem Gebiet ein Erdbeben dieser Stärke überfällig. Im statistischen Mittel liegt die Zeit zwischen zwei Erdbeben zu 96% unter 137 Jahren. Zudem wird eine deutliche zeitliche Abhängigkeit der Erdbeben-Wiederauftretensrate durch die Ergebnisse der in der Arbeit neu entwickelten statistischen Verfahren bestätigt. Dabei ist festzustellen, dass die Wiederholungsrate insbesondere kurz nach einem Erdbeben eine sehr hohe zeitliche Abhängigkeit aufweist. Am besten repräsentiert werden die seismischen Bedingungen in der genannten Subzone durch ein bi-modales Weibull-Weibull-Modell. Die Wiederholungsrate ist eine glatte Zeitfunktion, welche zwei Häufungen von Datenpunkten in der Zeit nach dem Erdbeben zeigt. Dabei umfasst die erste Häufung einen Zeitraum von 80 Jahren, ausgehend vom Zeitpunkt des jeweiligen Bebens. Innerhalb dieser Zeitspanne ist die Wiederholungsrate extrem zeitabhängig. Die Wiederholungsrate direkt nach einem Beben ist sehr niedrig und steigert sich in den folgenden 10 Jahren erheblich bis zu einem Maximum von 0.024 Erdbeben/Jahr. Anschließend sinkt die Rate und erreicht ihr Minimum nach weiteren 70 Jahren mit 0.0145 Erdbeben/Jahr. An dieses Minimum schließt sich die zweite Häufung von Daten an, dessen Dauer abhängig von der Erdbebenwiederholungszeit ist. Innerhalb dieses Zeitfensters nimmt die Erdbeben-Wiederauftretensrate annähernd konstant um 0.015 Erdbeben/Jahr zu. Diese Ergebnisse bilden die Grundlage für eine zeitabhängige probabilistische seismische Gefährdungseinschätzung (PSHA) für die seismische Quellregion, die den nördlichen Raum der DSFZ umfasst. N2 - The seismicity of the Dead Sea fault zone (DSFZ) during the last two millennia is characterized by a number of damaging and partly devastating earthquakes. These events pose a considerable seismic hazard and seismic risk to Syria, Lebanon, Palestine, Jordan, and Israel. The occurrence rates for large earthquakes along the DSFZ show indications to temporal changes in the long-term view. The aim of this thesis is to find out, if the occurrence rates of large earthquakes (Mw ≥ 6) in different parts of the DSFZ are time-dependent and how. The results are applied to probabilistic seismic hazard assessments (PSHA) in the DSFZ and neighboring areas. Therefore, four time-dependent statistical models (distributions), including Weibull, Gamma, Lognormal and Brownian Passage Time (BPT), are applied beside the exponential distribution (Poisson process) as the classical time-independent model. In order to make sure, if the earthquake occurrence rate follows a unimodal or a multimodal form, a nonparametric bootstrap test of multimodality has been done. A modified method of weighted Maximum Likelihood Estimation (MLE) is applied to estimate the parameters of the models. For the multimodal cases, an Expectation Maximization (EM) method is used in addition to the MLE method. The selection of the best model is done by two methods; the Bayesian Information Criterion (BIC) as well as a modified Kolmogorov-Smirnov goodness-of-fit test. Finally, the confidence intervals of the estimated parameters corresponding to the candidate models are calculated, using the bootstrap confidence sets. In this thesis, earthquakes with Mw ≥ 6 along the DSFZ, with a width of about 20 km and inside 29.5° ≤ latitude ≤ 37° are considered as the dataset. The completeness of this dataset is calculated since 300 A.D. The DSFZ has been divided into three sub zones; the southern, the central and the northern sub zone respectively. The central and the northern sub zones have been investigated but not the southern sub zone, because of the lack of sufficient data. The results of the thesis for the central part of the DSFZ show that the earthquake occurrence rate does not significantly pursue a multimodal form. There is also no considerable difference between the time-dependent and time-independent models. Since the time-independent model is easier to interpret, the earthquake occurrence rate in this sub zone has been estimated under the exponential distribution assumption (Poisson process) and will be considered as time-independent with the amount of 9.72 * 10-3 events/year. The northern part of the DSFZ is a special case, where the last earthquake has occurred in 1872 (about 137 years ago). However, the mean recurrence time of Mw ≥ 6 events in this area is about 51 years. Moreover, about 96 percent of the observed earthquake inter-event times (the time between two successive earthquakes) in the dataset regarding to this sub zone are smaller than 137 years. Therefore, it is a zone with an overdue earthquake. The results for this sub zone verify that the earthquake occurrence rate is strongly time-dependent, especially shortly after an earthquake occurrence. A bimodal Weibull-Weibull model has been selected as the best fit for this sub zone. The earthquake occurrence rate, corresponding to the selected model, is a smooth function of time and reveals two clusters within the time after an earthquake occurrence. The first cluster begins right after an earthquake occurrence, lasts about 80 years, and is explicitly time-dependent. The occurrence rate, regarding to this cluster, is considerably lower right after an earthquake occurrence, increases strongly during the following ten years and reaches its maximum about 0.024 events/year, then decreases over the next 70 years to its minimum about 0.0145 events/year. The second cluster begins 80 years after an earthquake occurrence and lasts until the next earthquake occurs. The earthquake occurrence rate, corresponding to this cluster, increases extremely slowly, such as it can be considered as an almost constant rate about 0.015 events/year. The results are applied to calculate the time-dependent PSHA in the northern part of the DSFZ and neighbouring areas. KW - Zeitanhängig KW - seismische Gefährdung KW - Tote Meer KW - Auftretensrate KW - Erdbeben KW - time dependent KW - seismic hazard KW - Dead Sea KW - occurrence rate KW - earthquake Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52486 ER - TY - THES A1 - Bora, Sanjay Singh T1 - Regionally adaptable ground-motion Prediction Equations (GMPEs) for seismic hazard analysis T1 - Regional anpassungsfähige Bodenbewegungsmodelle (engl. ground motion prediction equations, GMPEs) für Erdbebengefährdungsabschätzungen N2 - Adjustment of empirically derived ground motion prediction equations (GMPEs), from a data- rich region/site where they have been derived to a data-poor region/site, is one of the major challenges associated with the current practice of seismic hazard analysis. Due to the fre- quent use in engineering design practices the GMPEs are often derived for response spectral ordinates (e.g., spectral acceleration) of a single degree of freedom (SDOF) oscillator. The functional forms of such GMPEs are based upon the concepts borrowed from the Fourier spectral representation of ground motion. This assumption regarding the validity of Fourier spectral concepts in the response spectral domain can lead to consequences which cannot be explained physically. In this thesis, firstly results from an investigation that explores the relationship between Fourier and response spectra, and implications of this relationship on the adjustment issues of GMPEs, are presented. The relationship between the Fourier and response spectra is explored by using random vibration theory (RVT), a framework that has been extensively used in earthquake engineering, for instance within the stochastic simulation framework and in the site response analysis. For a 5% damped SDOF oscillator the RVT perspective of response spectra reveals that no one-to-one correspondence exists between Fourier and response spectral ordinates except in a limited range (i.e., below the peak of the response spectra) of oscillator frequencies. The high oscillator frequency response spectral ordinates are dominated by the contributions from the Fourier spectral ordinates that correspond to the frequencies well below a selected oscillator frequency. The peak ground acceleration (PGA) is found to be related with the integral over the entire Fourier spectrum of ground motion which is in contrast to the popularly held perception that PGA is a high-frequency phenomenon of ground motion. This thesis presents a new perspective for developing a response spectral GMPE that takes the relationship between Fourier and response spectra into account. Essentially, this frame- work involves a two-step method for deriving a response spectral GMPE: in the first step two empirical models for the FAS and for a predetermined estimate of duration of ground motion are derived, in the next step, predictions from the two models are combined within the same RVT framework to obtain the response spectral ordinates. In addition to that, a stochastic model based scheme for extrapolating the individual acceleration spectra beyond the useable frequency limits is also presented. To that end, recorded acceleration traces were inverted to obtain the stochastic model parameters that allow making consistent extrapola- tion in individual (acceleration) Fourier spectra. Moreover an empirical model, for a dura- tion measure that is consistent within the RVT framework, is derived. As a next step, an oscillator-frequency-dependent empirical duration model is derived that allows obtaining the most reliable estimates of response spectral ordinates. The framework of deriving the response spectral GMPE presented herein becomes a self-adjusting model with the inclusion of stress parameter (∆σ) and kappa (κ0) as the predictor variables in the two empirical models. The entire analysis of developing the response spectral GMPE is performed on recently compiled RESORCE-2012 database that contains recordings made from Europe, the Mediterranean and the Middle East. The presented GMPE for response spectral ordinates should be considered valid in the magnitude range of 4 ≤ MW ≤ 7.6 at distances ≤ 200 km. N2 - Die Anpassung von empirisch gewonnenen Bodenbewegungsmodellen (engl. ground motion prediction equations, GMPEs) einer Region an andere Zielregionen bzw. -standorte, für die es nur eine schlechte oder ungenügende Datengrundlage gibt, ist eine der großen Herausforderungen in der seismischen Gefährdungsanalyse. Die abgeleiteten GMPEs werden oft zur Vorhersage von sogenannten Antwortspektren (AS) erstellt. Diese Zielgröße ist von besonderem Interesse für ingenieurtechnische Berechnungen zur erdbebensicheren Auslegung von Gebäuden. Die gewählten funktionalen Formen von GMPEs sind oft der physikalisch basierten Darstellung von seismischer Bodenbewegung als Fourier-Amplituden-Spektren (FAS) entlehnt. Die Annahme der Gültigkeit dieser Konzepte für die Modellierung von Antwortspektren kann jedoch zu Phänomenen führen, die physikalisch nicht erklärbar sind. Im ersten Teil der vorliegenden Doktorarbeit wird deshalb die Beziehung zwischen FAS und AS unter dem Aspekt möglicher Implikationen für die Anpassung von GMPEs an Zielstand-orte näher erforscht und die gefundenen Ergebnisse präsentiert. Die Beziehung zwischen FAS und AS wurde mit Hilfe der `random-vibration-theory' (RVT) untersucht. RVT ist ein Modellierungansatz, der extensiv im Erbebeningenieurwesen benutzt wird, wie zum Beispiel bei der Stochastischen Methode zur Simulation von Bodenbewegungen oder bei standortspezifischen Analysen zur Reaktion von Gebäuden auf seismische Bodenerschütterungen. Die RVT basierten Analysen für das Antwortverhalten eines 5 % gedämpften Einmassenschwingers auf Bodenunruhe zeigen, dass es keine eins zu eins Übertragbarkeit zwischen FAS und AS gibt, abgesehen von einem eingeschränkten Bereich von Eigenfrequenzen des Massenschwingers, deren Antwortspektralwerte unterhalb des charakteristischen Maximums des AS liegen. Für hohe Eigenfrequenzen werden die Werte des AS von Beiträgen des FAS dominiert, deren Frequenzbereich weit tiefer liegt als die betrachtete Eigenfrequenz im AS. Es konnte beobachtet werden, dass die maximale Bodenbeschleunigung (engl. Peak Ground Acceleration, PGA) mit dem Integral über das gesamte, die Bodenunruhe beschreibende FAS in Verbindung steht. Dies steht im Kontrast zur weit verbreiteten Auffassung, PGA sei ein Hochfrequenzphänomen. In dieser Doktorarbeit wird eine neue Perspektive für die Erstellung von GMPEs für die Vorhersage von Antwortspektren (AS-GMPEs) vorgestellt, die die Beziehung zwischen FAS und AS mit einbezieht. Dieser Ansatz beinhaltet eine Zweischrittmethode, um ein AS-GMPE zu erstellen: Im ersten Schritt werden zwei empirische Modelle abgeleitet, welche der Vorhersage des FAS und der Dauer der seismischen Bodenbewegung dienen; im zweiten Schritt werden diese Vorhersagen der beiden empirischen Modelle (FAS, Dauer der Bodenbewegung) unter Benutzung der RVT miteinander kombiniert, um Antwortspektralwerte abzuleiten. Darüber hinaus wird ein Verfahren vorgestellt, das es ermöglicht, erhobene FAS Daten (individuelle Beschleunigungsspektren) über den nutzbaren Frequenzbereich der Daten hinaus zu extrapolieren. Das Verfahren basiert auf der Stochasitischen Methode zur Simulation von Bodenbewegungen. Zu diesem Zweck wurden gemessene Zeitreihen von Erdbeben induzierter Bodenbeschleunigung invertiert, um die Modellparameter der Stochastischen Methode zu bestimmen, was eine konsistente Extrapolation des jeweiligen individuellen (Beschleunigungs-) FAS erlaubt. Ferner wurde ein empirisches Modell für ein Maß der Dauer von seismischer Bodenbewegung entwickelt, das konsistent innerhalb des Ansatzes der RVT ist. In einem nächsten Schritt wurde ein empirisches Modell für die Dauer von seismischer Bodenunruhe entwickelt, das von der Eigenfrequenz des Einmassenschwingers abhängig ist. Dies erlaubt eine möglichst zuverlässige Vorhersage von Antwortspektralwerten. Das hier präsentierte Verfahren zur Ableitung von AS-GMPEs ermöglicht eine einfache Anpassung des AS-GMPE an einen Zielstandort, da es den Stressparameter (∆σ) und den Parameter Kappa (κ0) als Prädiktoren in den beiden empirischen Modellen mit einschließt. Die gesamte Analyse und Ableitung des AS-GMPE basiert auf erhobenen Daten der RESORCE-2012 Datenbank, die Messungen aus Europa, dem Mittelmeerraum und dem Mittleren Osten enthält. Das präsentierte AS-GMPE ist für den Magnituenbereich 4 ≤ MW ≤ 7.6 und für Distanzen ≤ 200 km gültig. KW - seismic hazard KW - response spectra KW - Ground Motion Prediction Equation (GMPE) KW - Fourier spectra KW - duration KW - Erdbebengefährdungsabschätzungen KW - Bodenbewegungsmodelle KW - Antwortspektren KW - Fourier-Spektren KW - Dauer der Bodenbewegung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88806 ER - TY - THES A1 - Lilienkamp, Henning T1 - Enhanced computational approaches for data-driven characterization of earthquake ground motion and rapid earthquake impact assessment T1 - Fortgeschrittene Berechnungsansätze für die datengestützte Charakterisierung von Erdbeben-Bodenbewegungen und die schnelle Einschätzung von Erdbebenauswirkungen N2 - Rapidly growing seismic and macroseismic databases and simplified access to advanced machine learning methods have in recent years opened up vast opportunities to address challenges in engineering and strong motion seismology from novel, datacentric perspectives. In this thesis, I explore the opportunities of such perspectives for the tasks of ground motion modeling and rapid earthquake impact assessment, tasks with major implications for long-term earthquake disaster mitigation. In my first study, I utilize the rich strong motion database from the Kanto basin, Japan, and apply the U-Net artificial neural network architecture to develop a deep learning based ground motion model. The operational prototype provides statistical estimates of expected ground shaking, given descriptions of a specific earthquake source, wave propagation paths, and geophysical site conditions. The U-Net interprets ground motion data in its spatial context, potentially taking into account, for example, the geological properties in the vicinity of observation sites. Predictions of ground motion intensity are thereby calibrated to individual observation sites and earthquake locations. The second study addresses the explicit incorporation of rupture forward directivity into ground motion modeling. Incorporation of this phenomenon, causing strong, pulse like ground shaking in the vicinity of earthquake sources, is usually associated with an intolerable increase in computational demand during probabilistic seismic hazard analysis (PSHA) calculations. I suggest an approach in which I utilize an artificial neural network to efficiently approximate the average, directivity-related adjustment to ground motion predictions for earthquake ruptures from the 2022 New Zealand National Seismic Hazard Model. The practical implementation in an actual PSHA calculation demonstrates the efficiency and operational readiness of my model. In a follow-up study, I present a proof of concept for an alternative strategy in which I target the generalizing applicability to ruptures other than those from the New Zealand National Seismic Hazard Model. In the third study, I address the usability of pseudo-intensity reports obtained from macroseismic observations by non-expert citizens for rapid impact assessment. I demonstrate that the statistical properties of pseudo-intensity collections describing the intensity of shaking are correlated with the societal impact of earthquakes. In a second step, I develop a probabilistic model that, within minutes of an event, quantifies the probability of an earthquake to cause considerable societal impact. Under certain conditions, such a quick and preliminary method might be useful to support decision makers in their efforts to organize auxiliary measures for earthquake disaster response while results from more elaborate impact assessment frameworks are not yet available. The application of machine learning methods to datasets that only partially reveal characteristics of Big Data, qualify the majority of results obtained in this thesis as explorative insights rather than ready-to-use solutions to real world problems. The practical usefulness of this work will be better assessed in the future by applying the approaches developed to growing and increasingly complex data sets. N2 - Das rapide Wachstum seismischer und makroseismischer Datenbanken und der vereinfachte Zugang zu fortschrittlichen Methoden aus dem Bereich des maschinellen Lernens haben in den letzen Jahren die datenfokussierte Betrachtung von Fragestellungen in der Seismologie ermöglicht. In dieser Arbeit erforsche ich das Potenzial solcher Betrachtungsweisen im Hinblick auf die Modellierung erdbebenbedingter Bodenerschütterungen und der raschen Einschätzung von gesellschaftlichen Erdbebenauswirkungen, Disziplinen von erheblicher Bedeutung für den langfristigen Erdbebenkatastrophenschutz in seismisch aktiven Regionen. In meiner ersten Studie nutze ich die Vielzahl an Bodenbewegungsdaten aus der Kanto Region in Japan, sowie eine spezielle neuronale Netzwerkarchitektur (U-Net) um ein Bodenbewegungsmodell zu entwickeln. Der einsatzbereite Prototyp liefert auf Basis der Charakterisierung von Erdbebenherden, Wellenausbreitungspfaden und Bodenbeschaffenheiten statistische Schätzungen der zu erwartenden Bodenerschütterungen. Das U-Net interpretiert Bodenbewegungsdaten im räumlichen Kontext, sodass etwa die geologischen Beschaffenheiten in der Umgebung von Messstationen mit einbezogen werden können. Auch die absoluten Koordinaten von Erdbebenherden und Messstationen werden berücksichtigt. Die zweite Studie behandelt die explizite Berücksichtigung richtungsabhängiger Verstärkungseffekte in der Bodenbewegungsmodellierung. Obwohl solche Effekte starke, impulsartige Erschütterungen in der Nähe von Erdbebenherden erzeugen, die eine erhebliche seismische Beanspruchung von Gebäuden darstellen, wird deren explizite Modellierung in der seismischen Gefährdungsabschätzung aufgrund des nicht vertretbaren Rechenaufwandes ausgelassen. Mit meinem, auf einem neuronalen Netzwerk basierenden, Ansatz schlage ich eine Methode vor, umdieses Vorhaben effizient für Erdbebenszenarien aus dem neuseeländischen seismischen Gefährdungsmodell für 2022 (NSHM) umzusetzen. Die Implementierung in einer seismischen Gefährdungsrechnung unterstreicht die Praktikabilität meines Modells. In einer anschließenden Machbarkeitsstudie untersuche ich einen alternativen Ansatz der auf die Anwendbarkeit auf beliebige Erdbebeszenarien abzielt. Die abschließende dritte Studie befasst sich mit dem potenziellen Nutzen der von makroseismischen Beobachtungen abgeleiteten pseudo-Erschütterungsintensitäten für die rasche Abschätzung von gesellschaftlichen Erdbebenauswirkungen. Ich zeige, dass sich aus den Merkmalen solcher Daten Schlussfolgerungen über die gesellschaftlichen Folgen eines Erdbebens ableiten lassen. Basierend darauf formuliere ich ein statistisches Modell, welches innerhalb weniger Minuten nach einem Erdbeben die Wahrscheinlichkeit für das Auftreten beachtlicher gesellschaftlicher Auswirkungen liefert. Ich komme zu dem Schluss, dass ein solches Modell, unter bestimmten Bedingungen, hilfreich sein könnte, um EntscheidungsträgerInnen in ihren Bestrebungen Hilfsmaßnahmen zu organisieren zu unterstützen. Die Anwendung von Methoden des maschinellen Lernens auf Datensätze die sich nur begrenzt als Big Data charakterisieren lassen, qualifizieren die Mehrheit der Ergebnisse dieser Arbeit als explorative Einblicke und weniger als einsatzbereite Lösungen für praktische Fragestellungen. Der praktische Nutzen dieser Arbeit wird sich in erst in Zukunft an der Anwendung der erarbeiteten Ansätze auf wachsende und zunehmend komplexe Datensätze final abschätzen lassen. KW - seismology KW - machine learning KW - deep learning KW - ground motion modeling KW - seismic hazard KW - rapid earthquake impact assessment KW - geophysics KW - Deep Learning KW - Geophysik KW - Bodenbewegungsmodellierung KW - maschinelles Lernen KW - schnelle Einschätzung von Erdbebenauswirkungen KW - seismische Gefährdung KW - Seismologie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-631954 ER - TY - THES A1 - Hainzl, Sebastian T1 - Earthquake triggering and interaction T1 - Erdbebenentstehung und Wechselwirkungen N2 - Earthquake faults interact with each other in many different ways and hence earthquakes cannot be treated as individual independent events. Although earthquake interactions generally lead to a complex evolution of the crustal stress field, it does not necessarily mean that the earthquake occurrence becomes random and completely unpredictable. In particular, the interplay between earthquakes can rather explain the occurrence of pronounced characteristics such as periods of accelerated and depressed seismicity (seismic quiescence) as well as spatiotemporal earthquake clustering (swarms and aftershock sequences). Ignoring the time-dependence of the process by looking at time-averaged values – as largely done in standard procedures of seismic hazard assessment – can thus lead to erroneous estimations not only of the activity level of future earthquakes but also of their spatial distribution. Therefore, it exists an urgent need for applicable time-dependent models. In my work, I aimed at better understanding and characterization of the earthquake interactions in order to improve seismic hazard estimations. For this purpose, I studied seismicity patterns on spatial scales ranging from hydraulic fracture experiments (meter to kilometer) to fault system size (hundreds of kilometers), while the temporal scale of interest varied from the immediate aftershock activity (minutes to months) to seismic cycles (tens to thousands of years). My studies revealed a number of new characteristics of fluid-induced and stress-triggered earthquake clustering as well as precursory phenomena in earthquake cycles. Data analysis of earthquake and deformation data were accompanied by statistical and physics-based model simulations which allow a better understanding of the role of structural heterogeneities, stress changes, afterslip and fluid flow. Finally, new strategies and methods have been developed and tested which help to improve seismic hazard estimations by taking the time-dependence of the earthquake process appropriately into account. N2 - Erdbeben interagieren in vielfältiger Weise miteinander, weshalb sie nicht als einzelne, unabhängige Ereignisse behandelt werden können. Obwohl diese Erdbebenwechselwirkungen in der Regel zu einer komplexen Entwicklung des Spannungsfelds führen, bedeutet dies nicht zwangsläufig, dass Erdbeben rein zufällig und völlig unberechenbar auftreten. Insbesondere kann das Zusammenspiel zwischen Erdbeben zu ausgeprägten Charakteristiken wie Phasen beschleunigter Aktivität, seismischer Ruhe sowie raumzeitlichen Erdbebenanhäufungen (Schwärme und Nachbebensequenzen) führen. Die Vernachlässigung der Zeitabhängigkeit des Erdbebenprozesses kann somit zu fehlerhaften Einschätzungen nicht nur des zukünftigen Aktivitätsniveaus, sondern auch der räumlichen Verteilung führen. Daher besteht ein dringender Bedarf an geeigneten zeitabhängigen Seismizitätsmodellen. Meine Arbeit zielt auf ein verbessertes Verständnis und Charakterisierung der Interaktionen von Erdbeben ab, um Abschätzungen der Erdbebengefährdung zu verbessern. Zu diesem Zweck untersuche ich Seismizitätsmuster auf den räumlichen Skalen von hydraulisch induzierten Öffnungsbrüchen (Meter bis Kilometer) bis zu Verwerfungssystemen (Hunderte von Kilometern), während die zeitlichen Skalen von Nachbebenaktivität (Minuten bis Monate) bis zu seismischen Zyklen (bis zu mehrere tausendend Jahre) reichen. Meine Studien ergeben eine Reihe neuer Merkmale von Fluid- und Spannungs-induzierten Erdbeben. Ergänzend zur reinen Datenanalyse der Erdbeben- und Deformationsdaten liefern statistische und Physik-basierte Modellsimulationen ein besseres Verständnis der Rolle von strukturellen Heterogenitäten, Spannungsänderungen und postseismischen Prozessen. Schließlich konnten neue Strategien und Methoden entwickelt und getestet werden, mit denen die Erdbebengefährdung besser eingeschätzt werden kann, indem die Zeitabhängigkeit des Erdbebens Prozess angemessen berücksichtigt wird. KW - Erdbebeninteraktion KW - Erdbebengefährdung KW - earthquake interaction KW - seismic hazard Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50095 ER -