TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Zhang, Shanshan A1 - Hages, Charles J. A1 - Rothhardt, Daniel A1 - Albrecht, Steve A1 - Burn, Paul L. A1 - Meredith, Paul A1 - Unold, Thomas A1 - Neher, Dieter T1 - Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells JF - Nature Energy N2 - The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81%). KW - Energy science and technology KW - Solar cells Y1 - 2018 U6 - https://doi.org/10.1038/s41560-018-0219-8 SN - 2058-7546 VL - 3 IS - 10 SP - 847 EP - 854 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Xu, Jingsan A1 - Brenner, Thomas J. K. A1 - Chen, Zupeng A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Shalom, Menny T1 - Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light JF - ACS applied materials & interfaces N2 - Herein, we report the use of upconversion agents to modify graphite carbon nitride (g-C3N4) by direct thermal condensation of a mixture of ErCl3 center dot 6H(2)O and the supramolecular precursor cyanuric acid-melamine. We show the enhancement of g-C3N4 photoactivity after Er3+ doping by monitoring the photodegradation of Rhodamine B dye under visible light. The contribution of the upconversion agent is demonstrated by measurements using only a red laser. The Er3+ doping alters both the electronic and the chemical properties of g-C3N4. The Er3+ doping reduces emission intensity and lifetime, indicating the formation of new, nonradiative deactivation pathways, probably involving charge-transfer processes. KW - metal-free photocatalysis KW - upconversion KW - carbon nitride KW - RhB photodegradation Y1 - 2014 U6 - https://doi.org/10.1021/am5051263 SN - 1944-8244 VL - 6 IS - 19 SP - 16481 EP - 16486 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zu, Fengshuo A1 - Wolff, Christian Michael A1 - Ralaiarisoa, Maryline A1 - Amsalem, Patrick A1 - Neher, Dieter A1 - Koch, Norbert T1 - Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies JF - ACS applied materials & interfaces N2 - The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites’ photophysical properties. KW - lead halide perovskite films KW - ultraviolet photoelectron spectroscopy KW - Kelvin probe KW - surface band bending KW - surface photovoltage KW - surface states Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b05293 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 24 SP - 21578 EP - 21583 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pingel, Patrick A1 - Zen, Achmad A1 - Neher, Dieter A1 - Lieberwirth, Ingo A1 - Wegner, Gerhard A1 - Allard, Sybille A1 - Scherf, Ullrich T1 - Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity N2 - Layers made from soluble low molecular weight polythiophene PQT-12 with low polydispersity exhibit a highly ordered structure and charge-carrier mobilities of the order of 10(-3) cm(2)/(V s), which we attribute to its proximity to monodispersity. We propose that polydispersity is a decisive factor with regard to structure formation and transport properties of soluble low molecular weight polythiophenes. Y1 - 2009 UR - http://www.springerlink.com/content/100501 U6 - https://doi.org/10.1007/s00339-008-4994-0 SN - 0947-8396 ER - TY - JOUR A1 - Perdigón-Toro, Lorena A1 - Le Quang Phuong, A1 - Eller, Fabian A1 - Freychet, Guillaume A1 - Saglamkaya, Elifnaz A1 - Khan, Jafar A1 - Wei, Qingya A1 - Zeiske, Stefan A1 - Kroh, Daniel A1 - Wedler, Stefan A1 - Koehler, Anna A1 - Armin, Ardalan A1 - Laquai, Frederic A1 - Herzig, Eva M. A1 - Zou, Yingping A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Understanding the role of order in Y-series non-fullerene solar cells to realize high open-circuit voltages JF - Advanced energy materials N2 - Non-fullerene acceptors (NFAs) as used in state-of-the-art organic solar cells feature highly crystalline layers that go along with low energetic disorder. Here, the crucial role of energetic disorder in blends of the donor polymer PM6 with two Y-series NFAs, Y6, and N4 is studied. By performing temperature-dependent charge transport and recombination studies, a consistent picture of the shape of the density of state distributions for free charges in the two blends is developed, allowing an analytical description of the dependence of the open-circuit voltage V-OC on temperature and illumination intensity. Disorder is found to influence the value of the V-OC at room temperature, but also its progression with temperature. Here, the PM6:Y6 blend benefits substantially from its narrower state distributions. The analysis also shows that the energy of the equilibrated free charge population is well below the energy of the NFA singlet excitons for both blends and possibly below the energy of the populated charge transfer manifold, indicating a down-hill driving force for free charge formation. It is concluded that energetic disorder of charge-separated states has to be considered in the analysis of the photovoltaic properties, even for the more ordered PM6:Y6 blend. KW - energetic disorder KW - non-fullerene acceptors KW - open-circuit voltage KW - organic solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103422 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Warby, Jonathan A1 - Zu, Fengshuo A1 - Zeiske, Stefan A1 - Gutierrez-Partida, Emilio A1 - Frohloff, Lennart A1 - Kahmann, Simon A1 - Frohna, Kyle A1 - Mosconi, Edoardo A1 - Radicchi, Eros A1 - Lang, Felix A1 - Shah, Sahil A1 - Pena-Camargo, Francisco A1 - Hempel, Hannes A1 - Unold, Thomas A1 - Koch, Norbert A1 - Armin, Ardalan A1 - De Angelis, Filippo A1 - Stranks, Samuel D. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Understanding performance limiting interfacial recombination in pin Perovskite solar cells JF - Advanced energy materials N2 - Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. KW - C60 KW - defects KW - interface recombination KW - loss mechanisms KW - perovskites KW - solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103567 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lange, Ilja A1 - Reiter, Sina A1 - Paetzel, Michael A1 - Zykov, Anton A1 - Nefedov, Alexei A1 - Hildebrandt, Jana A1 - Hecht, Stefan A1 - Kowarik, Stefan A1 - Woell, Christof A1 - Heimel, Georg A1 - Neher, Dieter T1 - Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers JF - Advanced functional materials N2 - Zinc oxide (ZnO) is regarded as a promising alternative material for transparent conductive electrodes in optoelectronic devices. However, ZnO suffers from poor chemical stability. ZnO also has a moderate work function (WF), which results in substantial charge injection barriers into common (organic) semiconductors that constitute the active layer in a device. Controlling and tuning the ZnO WF is therefore necessary but challenging. Here, a variety of phosphonic acid based self-assembled monolayers (SAMs) deposited on ZnO surfaces are investigated. It is demonstrated that they allow the tuning the WF over a wide range of more than 1.5 eV, thus enabling the use of ZnO as both the hole-injecting and electron-injecting contact. The modified ZnO surfaces are characterized using a number of complementary techniques, demonstrating that the preparation protocol yields dense, well-defined molecular monolayers. KW - ZnO KW - self-assembled monolayers KW - phosphonic acid KW - surface modification KW - electrodes Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201401493 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 44 SP - 7014 EP - 7024 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schubert, Marcel A1 - Frisch, Johannes A1 - Allard, Sybille A1 - Preis, Eduard A1 - Scherf, Ullrich A1 - Koch, Norbert A1 - Neher, Dieter T1 - Tuning side chain and main chain order in a prototypical donor-acceptor copolymer BT - implications for optical, electronic, and photovoltaic characteristics JF - Elementary Processes in Organic Photovoltaics N2 - The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties. KW - Aggregate states KW - All-polymer heterojunctions KW - Alternating copolymers KW - Ambipolar charge transport KW - Ambipolar materials KW - Backbone modifications KW - Bilayer solar cells KW - Charge separation KW - Conformational disorder KW - Crystalline phases KW - Donor-acceptor copolymers KW - Electron traps KW - Energetic disorder KW - Energy-level alignment KW - Fermi-level alignment KW - Fermi-level pinning KW - Interface dipole KW - Interlayer KW - Intrachain order KW - Intragap states KW - Microscopic morphology KW - Mobility imbalance KW - Mobility relaxation KW - Monte Carlo simulation KW - Multiple trapping model KW - Nonradiative recombination KW - OFET KW - Open-circuit voltage KW - Optoelectronic properties KW - Partially alternating copolymers KW - Photo-CELIV KW - Photocurrent KW - Photovoltaic gap KW - Polymer intermixing KW - Recombination losses KW - Spectral diffusion KW - Statistical copolymers KW - Stille-type cross-coupling KW - Structure-property relationships KW - Time-dependent mobility KW - Time-of-flight (TOF) KW - Transient photocurrent KW - Ultraviolet photoelectron spectroscopy KW - Vacuum-level alignment KW - X-ray photoelectron spectroscopy Y1 - 2016 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_10 SN - 0065-3195 VL - 272 SP - 243 EP - 265 PB - Springer CY - Berlin ER - TY - JOUR A1 - Yin, Chunhong A1 - Schubert, Marcel A1 - Stiller, Burkhard A1 - Castellani, Mauro A1 - Neher, Dieter A1 - Kumke, Michael Uwe A1 - Hörhold, Hans-Heinrich T1 - Tuning of the excited-state properties and photovoltaic performance in PPV-based polymer blends Y1 - 2008 U6 - https://doi.org/10.1021/Jp803977k ER - TY - JOUR A1 - Blakesley, James C. A1 - Schubert, Marcel A1 - Steyrleuthner, Robert A1 - Chen, Zhihua A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - Time-of-flight measurements and vertical transport in a high electron-mobility polymer JF - Applied physics letters N2 - We investigate charge transport in a high-electron mobility polymer, poly(N, N-bis 2-octyldodecyl-naphthalene-1,4,5,8-bis dicarboximide-2,6-diyl-alt-5,5-2,2-bithiophene) [P(NDI2OD-T2), Polyera ActivInk (TM) N2200]. Time-of-flight measurements reveal electron mobilities approaching those measured in field-effect transistors, the highest ever recorded in a conjugated polymer using this technique. The modest temperature dependence and weak dispersion of the transients indicate low energetic disorder in this material. Steady-state electron-only current measurements reveal a barrier to injection of about 300 meV. We propose that this barrier is located within the P(NDI2OD-T2) film and arises from molecular orientation effects. Y1 - 2011 U6 - https://doi.org/10.1063/1.3657827 SN - 0003-6951 VL - 99 IS - 18 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films N2 - It was discovered 10 years ago that the exposure of an initially flat layer of an azobenzene-containing polymer to an inhomogeneous light pattern leads to the formation of surface relief structures, accompanied by a mass transport over several micrometers. However, the driving force of this process is still unclear. We propose a new thermodynamic approach that explains a number of experimental findings including the light-induced deformation of free-standing films and the formation of surface relief gratings for main inscription geometries. Our basic assumption is that under homogeneous illumination, an initially isotropic sample should stretch itself along the polarization direction to compensate the entropy decrease produced by the photoinduced reorientation of azobenzene chromophores. The magnitude of the elastic stress, estimated by taking the derivative of the free energy over the sample deformation, is shown to be sufficient to induce plastic deformation of the polymer film. Orientational distributions of chromophores predicted by our model are compared with those deduced from Raman intensity measurements Y1 - 2005 SN - 1520-6106 ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Armin, Ardalan A1 - Philippa, Bronson A1 - Neher, Dieter T1 - The Role of Space Charge Effects on the Competition between Recombination and Extraction in Solar Cells with Low-Mobility Photoactive Layers JF - The journal of physical chemistry letters N2 - The competition between charge extraction and nongeminate recombination critically determines the current-voltage characteristics of organic solar cells (OSCs) and their fill factor. As a measure of this competition, several figures of merit (FOMs) have been put forward; however, the impact of space charge effects has been either neglected, or not specifically addressed. Here we revisit recently reported FOMs and discuss the role of space charge effects on the interplay between recombination and extraction. We find that space charge effects are the primary cause for the onset of recombination in so-called non-Langevin systems, which also depends on the slower carrier mobility and recombination coefficient. The conclusions are supported with numerical calculations and experimental results of 25 different donor/acceptor OSCs with different charge transport parameters, active layer thicknesses or composition ratios. The findings represent a conclusive understanding of bimolecular recombination for drift dominated photocurrents and allow one to minimize these losses for given device parameters. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpclett.6b02106 SN - 1948-7185 VL - 7 SP - 4716 EP - 4721 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Di Pietro, Riccardo A1 - Collins, Brian A. A1 - Polzer, Frank A1 - Himmelberger, Scott A1 - Schubert, Marcel A1 - Chen, Zhihua A1 - Zhang, Shiming A1 - Salleo, Alberto A1 - Ade, Harald W. A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer JF - Journal of the American Chemical Society Y1 - 2014 U6 - https://doi.org/10.1021/ja4118736 SN - 0002-7863 VL - 136 IS - 11 SP - 4245 EP - 4256 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhang, Shanshan A1 - Hosseini, Seyed Mehrdad A1 - Gunder, Rene A1 - Petsiuk, Andrei A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Shoaee, Safa A1 - Meredith, Paul A1 - Schorr, Susan A1 - Unold, Thomas A1 - Burn, Paul L. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells JF - Advanced materials N2 - 2D Ruddlesden-Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH3(CH2)(3)NH3)(2)(CH3NH3)(n-1)PbnI3n+1 perovskite cells with different numbers of [PbI6](4-) sheets (n = 2-4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V-OC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C-60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V-OC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements. KW - 2D perovskites KW - interface recombination KW - perovskite solar cells KW - photoluminescence KW - V-OC loss Y1 - 2019 U6 - https://doi.org/10.1002/adma.201901090 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 30 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mansour, Ahmed E. A1 - Lungwitz, Dominique A1 - Schultz, Thorsten A1 - Arvind, Malavika A1 - Valencia, Ana M. A1 - Cocchi, Caterina A1 - Opitz, Andreas A1 - Neher, Dieter A1 - Koch, Norbert T1 - The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl) BT - individual polymer chains versus aggregates JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - Optical absorption spectroscopy is a key method to investigate doped conjugated polymers and to characterize the doping-induced charge carriers, i.e., polarons. For prototypical poly(3-hexylthiophene-2,5-diyl) (P3HT), the absorption intensity of molecular dopant induced polarons is widely used to estimate the carrier density and the doping efficiency, i.e., the number of polarons formed per dopant molecule. However, the dependence of the polaron-related absorption features on the structure of doped P3HT, being either aggregates or separated individual chains, is not comprehensively understood in contrast to the optical absorption features of neutral P3HT. In this work, we unambiguously differentiate the optical signatures of polarons on individual P3HT chains and aggregates in solution, notably the latter exhibiting the same shape as aggregates in solid thin films. This is enabled by employing tris(pentafluorophenyl)borane (BCF) as dopant, as this dopant forms only ion pairs with P3HT and no charge transfer complexes, and BCF and its anion have no absorption in the spectral region of P3HT polarons. Polarons on individual chains exhibit absorption peaks at 1.5 eV and 0.6 eV, whereas in aggregates the high-energy peak is split into a doublet 1.3 eV and 1.65 eV, and the low-energy peak is shifted below 0.5 eV. The dependence of the fraction of solvated individual chains versus aggregates on absolute solution concentration, dopant concentration, and temperature is elucidated, and we find that aggregates predominate in solution under commonly used processing conditions. Aggregates in BCF-doped P3HT solution can be effectively removed upon simple filtering. From varying the filter pore size (down to 200 nm) and thin film morphology characterization with scanning force microscopy we reveal the aggregates' size dependence on solution absolute concentration and dopant concentration. Furthermore, X-ray photoelectron spectroscopy shows that the dopant loading in aggregates is higher than for individual P3HT chains. The results of this study help understanding the impact of solution pre-aggregation on thin film properties of molecularly doped P3HT, and highlight the importance of considering such aggregation for other doped conjugated polymers in general. Y1 - 2020 U6 - https://doi.org/10.1039/c9tc06509a SN - 2050-7526 SN - 2050-7534 VL - 8 IS - 8 SP - 2870 EP - 2879 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Nordmann, Joleik A1 - Zhang, Shanshan A1 - Rothhardt, Daniel A1 - Hörmann, Ulrich A1 - Amir, Yohai A1 - Redinger, Alex A1 - Kegelmann, Lukas A1 - Zu, Fengshuo A1 - Albrecht, Steve A1 - Koch, Norbert A1 - Kirchartz, Thomas A1 - Saliba, Michael A1 - Unold, Thomas A1 - Neher, Dieter T1 - The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells JF - Energy & environmental science N2 - Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (V-OC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the V-OC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the V-OC of the device. Importantly, the V-OC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the V-OC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the V-OC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces. Y1 - 2019 U6 - https://doi.org/10.1039/c9ee02020a SN - 1754-5692 SN - 1754-5706 VL - 12 IS - 9 SP - 2778 EP - 2788 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Sainova, Dessislava A1 - Fujikawa, H. A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - The effect of hole traps on the performance of single layer polymer light emitting diodes Y1 - 1999 ER - TY - JOUR A1 - Inal, Sahika A1 - Koelsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Kraft, Mario A1 - Gutacker, Andrea A1 - Janietz, Dietmar A1 - Scherf, Ullrich A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte JF - MACROMOLECULAR CHEMISTRY AND PHYSICS N2 - Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device. KW - aqueous solutions KW - conjugated polyelectrolytes KW - fluorescence (or Forster) KW - resonance energy transfer KW - phase transitions KW - thermoresponsive polymers Y1 - 2013 U6 - https://doi.org/10.1002/macp.201200493 SN - 1022-1352 VL - 214 IS - 4 SP - 435 EP - 445 PB - WILEY-V C H VERLAG GMBH CY - WEINHEIM ER - TY - JOUR A1 - Inal, Sahika A1 - Chiappisi, Leonardo A1 - Kölsch, Jonas D. A1 - Kraft, Mario A1 - Appavou, Marie-Sousai A1 - Scherf, Ullrich A1 - Wagner, Manfred A1 - Hansen, Michael Ryan A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements. Y1 - 2013 U6 - https://doi.org/10.1021/jp408864s SN - 1520-6106 VL - 117 IS - 46 SP - 14576 EP - 14587 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Kietzke, Thomas A1 - Carbonnier, B. A1 - Muhlbacher, D. A1 - Horhold, H. H. A1 - Neher, Dieter A1 - Pakula, T. T1 - Synthesis, characterization, and photophysical, electrochemical, electroluminescent, and photovoltaic properties of yne-containing CN-PPVs N2 - Alkoxy-substituted CN-containing phenylene-vinylene-alt-phenylene-ethynylene hybrid polymers (CN-PPV-PPE), 3a, 3b, and 7a, were obtained from luminophoric dialdehydes 1 by step growth polymerization via Knoevenagel reaction as high molecular-weight materials. Corresponding CN-free polymers 3c and 7b and an ethynylene-free polymer 5 with similar side chains were synthesized for the purpose of comparison. The chemical structures of the polymers were confirmed by IR, H-1 and C-13 NMR, and elemental analysis. Thermal characterization was conducted by means of thermogravimetric analysis and differential scanning calorimetry. Morphology was investigated by means of optical microscopy and small-angle light scattering. The final morphologies are determined by the molecular characteristics (side chains volume fraction, backbone stiffness) of the studied polymers. All the CN-containing polymers 3b, 5, and 7a exhibit higher fluorescence quantum yield in solid state (50 to 60%), but lower quantum yields (12-40%) in dilute chloroform solution, in total contrast to CN-free polymers 3c, 3d, and 7b. Identical optical, E-g(opt), and electrochemical band gap energies, E- g(ec), were obtained for 3b, 3c and 3d with intrinsic self-assembly ability, whereas a discrepancy, DeltaE(g), was observed in the cases of the fully substituted polymers 5, 7a, and 7b, whose values are dependent on the level of backbone stiffness and length of the side groups combined with the presence or absence of CN units. The incorporation of CN units in 3b and 7a lowers their respective LUMO level by 220 and 350 meV compared to their corresponding CN-free counterparts 3c and 7b, suggesting an improvement of the electron-accepting strength. Polymers 3b and 7a are efficient electron acceptors suitable for photovoltaic application. The experiments indicate that 3b is a better electron acceptor when used together with M3EH-PPV, but transport properties seem to be better for 7a. With 3b, high external quantum efficiencies of up to 23%, an open circuit voltage of up to 1.52 V, and a white light energy efficiency of 0.65% could be realized in bilayer solar cell devices. LED-devices of configuration ITO/PEDOT:PSS/polymer/Ca/Al from 3b, 3c, 7a, and 7b showed low turn-on voltages between 2 and 2.5 V. The CN-free polymers 3c and 7b exhibit far better EL parameters than their corresponding CN containing counterparts 3b and 7a Y1 - 2004 ER - TY - JOUR A1 - Di Pietro, Riccardo A1 - Erdmann, Tim A1 - Carpenter, Joshua H. A1 - Wang, Naixiang A1 - Shivhare, Rishi Ramdas A1 - Formanek, Petr A1 - Heintze, Cornelia A1 - Voit, Brigitte A1 - Neher, Dieter A1 - Ade, Harald W. A1 - Kiriy, Anton T1 - Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility JF - Chemistry of materials : a publication of the American Chemical Society Y1 - 2017 U6 - https://doi.org/10.1021/acs.chemmater.7b04423 SN - 0897-4756 SN - 1520-5002 VL - 29 SP - 10220 EP - 10232 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zerson, Mario A1 - Neumann, Martin A1 - Steyrleuthner, Robert A1 - Neher, Dieter A1 - Magerle, Robert T1 - Surface Structure of Semicrystalline Naphthalene Diimide-Bithiophene Copolymer Films Studied with Atomic Force Microscopy JF - Macromolecules : a publication of the American Chemical Society Y1 - 2016 U6 - https://doi.org/10.1021/acs.macromol.6b00988 SN - 0024-9297 SN - 1520-5835 VL - 49 SP - 6549 EP - 6557 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yang, Xiao Hui A1 - Jaiser, Frank A1 - Neher, Dieter A1 - Lawson, PaDreyia V. A1 - Brédas, Jean-Luc A1 - Zojer, Egbert A1 - Güntner, Roland A1 - Scanduicci de Freitas, Patricia A1 - Forster, Michael A1 - Scherf, Ullrich T1 - Suppression of the keto-emission in polyfluorene light-emitting diodes : Experiments and models N2 - The spectral characteristics of polyfluorene (PF)-based light-emitting diodes (LEDs) containing a defined low concentration of either keto-defects or of the polymer poly(9.9-octylfuorene-co-benzothiadiazole) (F8BT) are preseneted. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green blue emission components. It is shown that blending hole-transporting molecules into the emission layer at low concentration or incorporation of a suitable hole-transport layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto- containing PF layer. We conclude that the keto-defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum-mechanical calculations Y1 - 2004 SN - 1616-301X ER - TY - JOUR A1 - Inal, Sahika A1 - Kölsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Janietz, Dietmar A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers N2 - We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/tc/c3tc31304b U6 - https://doi.org/10.1039/C3TC31304B ER - TY - JOUR A1 - Inal, Sahika A1 - Koelsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Janietz, Dietmar A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore. Y1 - 2013 U6 - https://doi.org/10.1039/c3tc31304b SN - 2050-7526 VL - 1 IS - 40 SP - 6603 EP - 6612 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Nikolis, Vasileios C. A1 - Mischok, Andreas A1 - Siegmund, Bernhard A1 - Kublitski, Jonas A1 - Jia, Xiangkun A1 - Benduhn, Johannes A1 - Hörmann, Ulrich A1 - Neher, Dieter A1 - Gather, Malte C. A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Strong light-matter coupling for reduced photon energy losses in organic photovoltaics JF - Nature Communications N2 - Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photoactive layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-11717-5 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Hörmann, Ulrich A1 - Zeiske, Stefan A1 - Piersimoni, Fortunato A1 - Hoffmann, Lukas A1 - Schlesinger, Raphael A1 - Koch, Norbert A1 - Riedl, Thomas A1 - Andrienko, Denis A1 - Neher, Dieter T1 - Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the bias dependence of the hybrid charge transfer state emission at planar heterojunctions between the metal oxide acceptor ZnO and three donor molecules. The electroluminescence peak energy linearly increases with the applied bias, saturating at high fields. Variation of the organic layer thickness and deliberate change of the ZnO conductivity through controlled photodoping allow us to confirm that this bias-induced spectral shift relates to the internal electric field in the organic layer rather than the filling of states at the hybrid interface. We show that existing continuum models overestimate the hole delocalization and propose a simple electrostatic model in which the linear and quadratic Stark effects are explained by the electrostatic interaction of a strongly polarizable molecular cation with its mirror image. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevB.98.155312 SN - 2469-9950 SN - 2469-9969 VL - 98 IS - 15 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Tait, Claudia E. A1 - Reckwitz, Anna A1 - Arvind, Malavika A1 - Neher, Dieter A1 - Bittl, Robert A1 - Behrends, Jan T1 - Spin-spin interactions and spin delocalisation in a doped organic semiconductor probed by EPR spectroscopy JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - The enhancement and control of the electrical conductivity of organic semiconductors is fundamental for their use in optoelectronic applications and can be achieved by molecular doping, which introduces additional charge carriers through electron transfer between a dopant molecule and the organic semiconductor. Here, we use Electron Paramagnetic Resonance (EPR) spectroscopy to characterise the unpaired spins associated with the charges generated by molecular doping of the prototypical organic semiconductor poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) and tris(pentafluorophenyl)borane (BCF). The EPR results reveal the P3HT radical cation as the only paramagnetic species in BCF-doped P3HT films and show evidence for increased mobility of the detected spins at high doping concentrations as well as formation of antiferromagnetically coupled spin pairs leading to decreased spin concentrations at low temperatures. The EPR signature for F(4)TCNQ-doped P3HT is found to be determined by spin exchange between P3HT radical cations and F(4)TCNQ radical anions. Results from continuous-wave and pulse EPR measurements suggest the presence of the unpaired spin on P3HT in a multitude of environments, ranging from free P3HT radical cations with similar properties to those observed in BCF-doped P3HT, to pairs of dipolar and exchange-coupled spins on P3HT and the dopant anion. Characterisation of the proton hyperfine interactions by ENDOR allowed quantification of the extent of spin delocalisation and revealed reduced delocalisation in the F(4)TCNQ-doped P3HT films. Y1 - 2021 U6 - https://doi.org/10.1039/d1cp02133h SN - 1463-9076 SN - 1463-9084 VL - 23 IS - 25 SP - 13827 EP - 13841 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Neusser, David A1 - Sun, Bowen A1 - Tan, Wen Liang A1 - Thomsen, Lars A1 - Schultz, Thorsten A1 - Perdigon-Toro, Lorena A1 - Koch, Norbert A1 - Shoaee, Safa A1 - McNeill, Christopher R. A1 - Neher, Dieter A1 - Ludwigs, Sabine T1 - Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - Recent advances in organic solar cell performance have been mainly driven forward by combining high-performance p-type donor-acceptor copolymers (e.g.PM6) and non-fullerene small molecule acceptors (e.g.Y6) as bulk-heterojunction layers. A general observation in such devices is that the device performance, e.g., the open-circuit voltage, is strongly dependent on the processing solvent. While the morphology is a typically named key parameter, the energetics of donor-acceptor blends are equally important, but less straightforward to access in the active multicomponent layer. Here, we propose to use spectral onsets during electrochemical cycling in a systematic spectroelectrochemical study of blend films to access the redox behavior and the frontier orbital energy levels of the individual compounds. Our study reveals that the highest occupied molecular orbital offset (Delta E-HOMO) in PM6:Y6 blends is similar to 0.3 eV, which is comparable to the binding energy of Y6 excitons and therefore implies a nearly zero driving force for the dissociation of Y6 excitons. Switching the PM6 orientation in the blend films from face-on to edge-on in bulk has only a minor influence on the positions of the energy levels, but shows significant differences in the open circuit voltage of the device. We explain this phenomenon by the different interfacial molecular orientations, which are known to affect the non-radiative decay rate of the charge-transfer state. We compare our results to ultraviolet photoelectron spectroscopy data, which shows distinct differences in the HOMO offsets in the PM6:Y6 blend compared to neat films. This highlights the necessity to measure the energy levels of the individual compounds in device-relevant blend films. Y1 - 2022 U6 - https://doi.org/10.1039/d2tc01918c SN - 2050-7526 SN - 2050-7534 VL - 10 IS - 32 SP - 11565 EP - 11578 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zen, Achmad A1 - Bilge, Askin A1 - Galbrecht, Frank A1 - Alle, Ronald A1 - Meerholz, Klaus A1 - Grenzer, Jörg A1 - Neher, Dieter A1 - Scherf, Ullrich A1 - Farrell, Tony T1 - Solution processable organic field-effect transistors utilizing an alpha,alpha '-dihexylpentathiophene- based swivel cruciform Y1 - 2006 UR - http://pubs.acs.org/doi/full/10.1021/ja0573357 U6 - https://doi.org/10.1021/Ja0573357 ER - TY - JOUR A1 - Shalom, Menny A1 - Inal, Sahika A1 - Neher, Dieter A1 - Antonietti, Markus T1 - SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis JF - Catalysis today : a serial publication dealing with topical themes in catalysis and related subjects N2 - The effect of SiO2 nanoparticles on carbon nitride (C3N4) photoactivity performance is described. The composite SiO2-C3N4 materials exhibit a higher activity in the photo degradation of RhB dye. A detailed analysis of the chemical and optical properties of the composite C3N4 materials shows that the photo activity increases with higher SiO2 concentration. We found out that the presence of SiO2 nanoparticles strongly affects the fluorescence intensity of the matrix and life time by the creation of new energy states for charge transfer within the C3N4. Furthermore, the use of SiO2 in the synthesis of C3N4 leads to new morphology with higher surface area which results in another, secondary improvement of C3N4 photoactivity. The effect of different surfaces within C3N4 on its chemical and electronic properties is discussed and a tentative mechanism is proposed. The utilization of SiO2 nanoparticles improves both photophysical and chemical properties of C3N4 and opens new possibilities for further enhancement of C3N4 catalytic properties by the formation of composites with many other materials. KW - Carbon nitride KW - SiO2 composite material KW - Photocatalysis KW - RhB degradation Y1 - 2014 U6 - https://doi.org/10.1016/j.cattod.2013.12.013 SN - 0920-5861 SN - 1873-4308 VL - 225 SP - 185 EP - 190 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Di Pietro, Riccardo A1 - Venkateshvaran, Deepak A1 - Klug, Andreas A1 - List-Kratochvil, Emil J. W. A1 - Facchetti, Antonio A1 - Sirringhaus, Henning A1 - Neher, Dieter T1 - Simultaneous extraction of charge density dependent mobility and variable contact resistance from thin film transistors JF - Applied physics letters N2 - A model for the extraction of the charge density dependent mobility and variable contact resistance in thin film transistors is proposed by performing a full derivation of the current-voltage characteristics both in the linear and saturation regime of operation. The calculated values are validated against the ones obtained from direct experimental methods. This approach allows unambiguous determination of gate voltage dependent contact and channel resistance from the analysis of a single device. It solves the inconsistencies in the commonly accepted mobility extraction methods and provides additional possibilities for the analysis of the injection and transport processes in semiconducting materials. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4876057 SN - 0003-6951 SN - 1077-3118 VL - 104 IS - 19 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Raoufi, Meysam A1 - Hörmann, Ulrich A1 - Ligorio, Giovanni A1 - Hildebrandt, Jana A1 - Pätzel, Michael A1 - Schultz, Thorsten A1 - Perdigón-Toro, Lorena A1 - Koch, Norbert A1 - List-Kratochvil, Emil A1 - Hecht, Stefan A1 - Neher, Dieter T1 - Simultaneous effect of ultraviolet radiation and surface modification on the work function and hole injection properties of ZnO thin films JF - Physica Status Solidi. A , Applications and materials science N2 - The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions. KW - charge injection across hybrid interfaces KW - energy-level alignments KW - hybrid metal oxides KW - organic interfaces Y1 - 2020 U6 - https://doi.org/10.1002/pssa.201900876 SN - 1862-6300 SN - 1862-6319 VL - 217 IS - 5 SP - 1 EP - 6 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bagnich, Sergey A. A1 - Bassler, H. A1 - Neher, Dieter T1 - Sensitized phosphorescence of benzil-doped ladder-type methyl-poly(para-phenylene) N2 - The delayed luminescence and phosphorescence of ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with benzil at a concentration of 20% by weight has been measured. The introduction of benzil leads to a dramatic reduction of the polymer singlet emission. At the same time, a new band with maximum at 611 nm appears, corresponding to the phosphorescence of MeLPPP. The phosphorescence decay on the short time scale is close to an exponential law with a time decay of 15 ms. This indicates that benzil can efficiently sensitize the phosphorescence of the polymer. In addition, a broad and featureless emission is observed in the delayed luminescence spectra of benzil-doped MeLPPP, which is attributed to an exciplex formed between the polymer host and the dopant. We further observe that the delayed fluorescence is enhanced by the addition of benzil. It is concluded that the delayed fluorescence of benzil-doped MeLPPP is mainly due to the annihilation of triplet excitons on the polymer. Finally, efficient triplet-triplet energy transfer from the benzil-doped polymer to the red-emitting phosphorescent dye Pt(II)octaethylporphyrin is established. (C) 2004 American Institute of Physics Y1 - 2004 SN - 0021-9606 ER - TY - JOUR A1 - Landfester, Katharina A1 - Montenegro, Rivelino V. D. A1 - Scherf, Ullrich A1 - Günter, R. A1 - Asawapirom, Udom A1 - Patil, S. A1 - Neher, Dieter A1 - Kietzke, Thomas T1 - Semiconducting polymer nanospheres in aqeous dispersion prepared by a miniemulsion process Y1 - 2002 ER - TY - JOUR A1 - Galbrecht, Frank A1 - Yang, X. H. A1 - Nehls, B. S. A1 - Neher, Dieter A1 - Farrell, Tony A1 - Scherf, Ullrich T1 - Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores N2 - The synthesis of statistical fluorene-type copolymers with on-chain Pt-salen phosphorescent units and their use in electrophosphorescent OLEDs is reported Y1 - 2005 SN - 1359-7345 ER - TY - JOUR A1 - Hahn, Tobias A1 - Tscheuschner, Steffen A1 - Saller, Christina A1 - Strohriegl, Peter A1 - Boregowda, Puttaraju A1 - Mukhopadhyay, Tushita A1 - Patil, Satish A1 - Neher, Dieter A1 - Bässler, Heinz A1 - Köhler, Anna T1 - Role of Intrinsic Photogeneration in Single Layer and Bilayer Solar Cells with C-60 and PCBM JF - The journal of physical chemistry : C, Nanomaterials and interfaces Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b08471 SN - 1932-7447 VL - 120 SP - 25083 EP - 25091 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pena-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Hempel, Hannes A1 - Musiienko, Artem A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Warby, Jonathan A1 - Unold, Thomas A1 - Lang, Felix A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Revealing the doping density in perovskite solar cells and its impact on device performance JF - Applied physics reviews N2 - Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085286 SN - 1931-9401 VL - 9 IS - 2 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Lang, Felix A1 - Köhnen, Eike A1 - Warby, Jonathan A1 - Xu, Ke A1 - Grischek, Max A1 - Wagner, Philipp A1 - Neher, Dieter A1 - Korte, Lars A1 - Albrecht, Steve A1 - Stolterfoht, Martin T1 - Revealing fundamental efficiency limits of monolithic perovskite/silicon tandem photovoltaics through subcell characterization JF - ACS Energy Letters N2 - Perovskite/silicon tandem photovoltaics (PVs) promise to accelerate the decarbonization of our energy systems. Here, we present a thorough subcell diagnosis methodology to reveal deep insights into the practical efficiency limitations of state-of-the-art perovskite/silicon tandem PVs. Our subcell selective intensity-dependent photoluminescence (PL) and injection-dependent electroluminescence (EL) measurements allow independent assessment of pseudo-V-OC and power conversion efficiencies (PCEs) for both subcells. We reveal identical metrics from PL and EL, which implies well-aligned energy levels throughout the entire cell. Relatively large ideality factors and insufficient charge extraction, however, cause each a fill factor penalty of about 6% (absolute). Using partial device stacks, we then identify significant losses in standard perovskite subcells due to bulk and interfacial recombination. Lastly, we present strategies to minimize these losses using triple halide (CsFAPb(IBrCI)(3)) based perovskites. Our results give helpful feedback for device development and lay the foundation toward advanced perovskite/silicon tandem PVs capable of exceeding 33% PCE. Y1 - 2021 U6 - https://doi.org/10.1021/acsenergylett.1c01783 SN - 2380-8195 VL - 6 IS - 11 SP - 3982 EP - 3991 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Bange, Sebastian A1 - Neher, Dieter T1 - Reliable electron-only devices and electron transport in n-type polymers N2 - Current-voltage analysis of single-carrier transport is a popular method for the determination of charge carrier mobilities in organic semiconductors. Although in widespread use for the analysis of hole transport, only a few reports can be found where the method was applied to electron transport. Here, we summarize the experimental difficulties related to the metal electrode leakage currents and nonlinear differential resistance (NDR) effects and explain their origin. We present a modified preparation technique for the metal electrodes and show that it significantly increases the reliability of such measurements. It allows to produce test devices with low leakage currents and without NDR even for thin organic layers. Metal oxides were often discussed as a possible cause of NDR. Our measurements on forcibly oxidized metal electrodes demonstrate that oxide layers are not exclusively responsible for NDR effects. We present electron transport data for two electron-conducting polymers often applied in all-polymer solar cells for a large variety of layer thicknesses and temperatures. The results can be explained by established exponential trapping models. Y1 - 2009 UR - http://jap.aip.org/ U6 - https://doi.org/10.1063/1.3086307 SN - 0021-8979 ER - TY - JOUR A1 - Kniepert, Juliane A1 - Paulke, Andreas A1 - Perdigón-Toro, Lorena A1 - Kurpiers, Jona A1 - Zhang, Huotian A1 - Gao, Feng A1 - Yuan, Jun A1 - Zou, Yingping A1 - Le Corre, Vincent M. A1 - Koster, Lambert Jan Anton A1 - Neher, Dieter T1 - Reliability of charge carrier recombination data determined with charge extraction methods JF - Journal of applied physics N2 - Charge extraction methods are popular for measuring the charge carrier density in thin film organic solar cells and to draw conclusions about the order and coefficient of nongeminate charge recombination. However, results from such studies may be falsified by inhomogeneous steady state carrier profiles or surface recombination. Here, we present a detailed drift-diffusion study of two charge extraction methods, bias-assisted charge extraction (BACE) and time-delayed collection field (TDCF). Simulations are performed over a wide range of the relevant parameters. Our simulations reveal that both charge extraction methods provide reliable information about the recombination order and coefficient if the measurements are performed under appropriate conditions. However, results from BACE measurements may be easily affected by surface recombination, in particular for small active layer thicknesses and low illumination densities. TDCF, on the other hand, is more robust against surface recombination due to its transient nature but also because it allows for a homogeneous high carrier density to be inserted into the active layer. Therefore, TDCF is capable to provide meaningful information on the order and coefficient of recombination even if the model conditions are not exactly fulfilled. We demonstrate this for an only 100 nm thick layer of a highly efficient nonfullerene acceptor (NFA) blend, comprising the donor polymer PM6 and the NFA Y6. TDCF measurements were performed as a function of delay time for different laser fluences and bias conditions. The full set of data could be consistently fitted by a strict second order recombination process, with a bias- and fluence-independent bimolecular recombination coefficient k(2) = 1.7 x 10(-17)m(3) s(-1). BACE measurements performed on the very same layer yielded the identical result, despite the very different excitation conditions. This proves that recombination in this blend is mostly through processes in the bulk and that surface recombination is of minor importance despite the small active layer thickness. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5129037 SN - 0021-8979 SN - 1089-7550 VL - 126 IS - 20 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Inal, Sahika A1 - Castellani, Mauro A1 - Sellinger, Alan A1 - Neher, Dieter T1 - Relationship of photophysical properties and the device performance of novel hybrid small-molecular/polymeric solar cells N2 - We investigate solar cells comprised of a vinazene derivative (HV-BT) as the electron acceptor and the well- known polymer poly(3-hexylthiophene) as the electron donor. In the as-prepared blend, most of the excited state species, including the excimers on HV-BT, are quenched at the heterojunction. Although the photophysical properties of the blends change upon annealing, the blend solar cells largely remain uninfluenced by such treatments. A significant improvement is, however, observed when inducing phase separation at a longer length scale, for example, in solution-processed bilayer devices. Hereby, both the fill factor (FF) and the open circuit voltage are considerably increased, pointing to the importance of the heterojunction topology and the layer composition at the charge extracting contacts. An optimized device exhibits a power conversion efficiency of close to 1%. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10003270 U6 - https://doi.org/10.1002/marc.200900221 SN - 1022-1336 ER - TY - JOUR A1 - Blakesley, James C. A1 - Neher, Dieter T1 - Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells JF - Physical review : B, Condensed matter and materials physics N2 - We simulate organic bulk heterojunction solar cells. The effects of energetic disorder are incorporated through a Gaussian or exponential model of density of states. Analytical models of open-circuit voltage (V(OC)) are derived from the splitting of quasi-Fermi potentials. Their predictions are backed up by more complex numerical device simulations including effects such as carrier-density-dependent charge-carrier mobilities. It is predicted that the V(OC) depends on: (1) the donor-acceptor energy gap; (2) charge-carrier recombination rates; (3) illumination intensity; (4) the contact work functions (if not in the pinning regime); and (5) the amount of energetic disorder. A large degree of energetic disorder, or a high density of traps, is found to cause significant reductions in V(OC). This can explain why V(OC) is often less than expected in real devices. Energetic disorder also explains the nonideal temperature and intensity dependence of V(OC) and the superbimolecular recombination rates observed in many real bulk heterojunction solar cells. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevB.84.075210 SN - 1098-0121 VL - 84 IS - 7 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Nikolis, Vasileios C. A1 - Benduhn, Johannes A1 - Holzmueller, Felix A1 - Piersimoni, Fortunato A1 - Lau, Matthias A1 - Zeika, Olaf A1 - Neher, Dieter A1 - Koerner, Christian A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies JF - dvanced energy materials N2 - High photon energy losses limit the open-circuit voltage (V-OC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the V-OC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (alpha-6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the V-OC of an alpha-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D-A interface. By accurately measuring the optical gap (E-opt) and the energy of the charge-transfer state (E-CT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. E-opt - qV(OC) losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the V-OC-optimized devices, the low-energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low-voltage losses can be combined with a high EQE in organic photovoltaic devices. KW - energy losses KW - nonradiative recombination KW - open-circuit voltage KW - organic solar cells KW - voltage losses Y1 - 2017 U6 - https://doi.org/10.1002/aenm.201700855 SN - 1614-6832 SN - 1614-6840 VL - 7 SP - 122 EP - 136 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wolff, Christian Michael A1 - Zu, Fengshuo A1 - Paulke, Andreas A1 - Perdigón-Toro, Lorena A1 - Koch, Norbert A1 - Neher, Dieter T1 - Reduced Interface-Mediated Recombination for High Open-Circuit Voltages in CH3NH3PbI3 Solar Cells JF - Advanced materials N2 - Perovskite solar cells with all-organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high-temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron-transporting layer of inverted perovskite cells affects the open-circuit voltage (V-OC). It is shown that nonradiative recombination mediated by the electron-transporting layer is the limiting factor for the V-OC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a V-OC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high V-OC and efficiency. KW - electron-transport layers KW - nonradiative recombination KW - open-circuit voltage KW - perovskite solar cells Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700159 SN - 0935-9648 SN - 1521-4095 VL - 29 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Würfel, Uli A1 - Perdigón-Toro, Lorena A1 - Kurpiers, Jona A1 - Wolff, Christian Michael A1 - Caprioglio, Pietro A1 - Rech, Jeromy James A1 - Zhu, Jingshuai A1 - Zhan, Xiaowei A1 - You, Wei A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells JF - The journal of physical chemistry letters N2 - Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.9b01175 SN - 1948-7185 VL - 10 IS - 12 SP - 3473 EP - 3480 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wang, Qiong A1 - Mosconi, Edoardo A1 - Wolff, Christian Michael A1 - Li, Junming A1 - Neher, Dieter A1 - De Angelis, Filippo A1 - Suranna, Gian Paolo A1 - Grisorio, Roberto A1 - Abate, Antonio T1 - Rationalizing the molecular design of hole-selective contacts to improve charge extraction in Perovskite solar cells JF - dvanced energy materials N2 - Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro-OMeTAD. Importantly, the low-cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells. KW - hole extraction KW - hole selective materials KW - perovskite solar cells KW - sulfur KW - triple-cation perovskite Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201900990 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 28 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Turner, Sarah T. A1 - Pingel, Patrick A1 - Steyrleuthner, Robert A1 - Crossland, Edward J. W. A1 - Ludwigs, Sabine A1 - Neher, Dieter T1 - Quantitative analysis of bulk heterojunction films using linear absorption spectroscopy and solar cell performance JF - Advanced functional materials N2 - A fundamental understanding of the relationship between the bulk morphology and device performance is required for the further development of bulk heterojunction organic solar cells. Here, non-optimized (chloroform cast) and nearly optimized (solvent-annealed o-dichlorobenzene cast) P3HT:PCBM blend films treated over a range of annealing temperatures are studied via optical and photovoltaic device measurements. Parameters related to the P3HT aggregate morphology in the blend are obtained through a recently established analytical model developed by F. C. Spano for the absorption of weakly interacting H-aggregates. Thermally induced changes are related to the glass transition range of the blend. In the chloroform prepared devices, the improvement in device efficiency upon annealing within the glass transition range can be attributed to the growth of P3HT aggregates, an overall increase in the percentage of chain crystallinity, and a concurrent increase in the hole mobilities. Films treated above the glass transition range show an increase in efficiency and fill factor not only associated with the change in chain crystallinity, but also with a decrease in the energetic disorder. On the other hand, the properties of the P3HT phase in the solvent-annealed o-dichlorobenzene cast blends are almost indistinguishable from those of the corresponding pristine P3HT layer and are only weakly affected by thermal annealing. Apparently, slow drying of the blend allows the P3HT chains to crystallize into large domains with low degrees of intra- and interchain disorder. This morphology appears to be most favorable for the efficient generation and extraction of charges. KW - Organic electronics KW - morphology KW - solar cells KW - mobility KW - absorption spectroscopy Y1 - 2011 U6 - https://doi.org/10.1002/adfm.201101583 SN - 1616-301X VL - 21 IS - 24 SP - 4640 EP - 4652 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Phuong, Le Quang A1 - Hosseini, Seyed Mehrdad A1 - Sandberg, Oskar J. A1 - Zou, Yingping A1 - Woo, Han Young A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells JF - Solar RRL N2 - The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. KW - nonfullerene acceptors KW - organic solar cells KW - quasi-Fermi level KW - splitting KW - quasi-steady-state photoinduced absorptions KW - surface KW - recombinations KW - voltage losses Y1 - 2020 U6 - https://doi.org/10.1002/solr.202000649 SN - 2367-198X VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Albrecht, Steve A1 - Tumbleston, John R. A1 - Janietz, Silvia A1 - Dumsch, Ines A1 - Allard, Sybille A1 - Scherf, Ullrich A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Quantifying charge extraction in organic solar cells: The case of fluorinated PCPDTBT JF - The journal of physical chemistry letters N2 - We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer. Y1 - 2014 U6 - https://doi.org/10.1021/jz500457b SN - 1948-7185 VL - 5 IS - 7 SP - 1131 EP - 1138 PB - American Chemical Society CY - Washington ER -