TY - JOUR A1 - Maes, Sybryn L. A1 - Perring, Michael P. A1 - Vanhellemont, Margot A1 - Depauw, Leen A1 - Van den Bulcke, Jan A1 - Brumelis, Guntis A1 - Brunet, Jorg A1 - Decocq, Guillaume A1 - den Ouden, Jan A1 - Härdtle, Werner A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Heinrichs, Steffi A1 - Jaroszewicz, Bogdan A1 - Kopecký, Martin A1 - Malis, Frantisek A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Environmental drivers interactively affect individual tree growth across temperate European forests JF - Global change biology N2 - Forecasting the growth of tree species to future environmental changes requires abetter understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to localland‐use drivers such as forest management. Yet, large geographical scale studiesexamining interactive growth responses to multiple global‐change drivers are relativelyscarce and rarely consider management effects. Here, we assessed the interactiveeffects of three global‐change drivers (temperature, precipitation and nitrogen deposi-tion) on individual tree growth of three study species (Quercus robur/petraea, Fagus syl-vatica and Fraxinus excelsior). We sampled trees along spatial environmental gradientsacross Europe and accounted for the effects of management for Quercus. We collectedincrement cores from 267 trees distributed over 151 plots in 19 forest regions andcharacterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. Wedemonstrate that growth responds interactively to global‐change drivers, with species ‐specific sensitivities to the combined factors. Simultaneously high levels of precipita-tion and deposition benefited Fraxinus, but negatively affected Quercus’ growth, high-lighting species‐specific interactive tree growth responses to combined drivers. ForFagus, a stronger growth response to higher temperatures was found when precipita-tion was also higher, illustrating the potential negative effects of drought stress underwarming for this species. Furthermore, we show that past forest management canmodulate the effects of changing temperatures on Quercus’ growth; individuals in plotswith a coppicing history showed stronger growth responses to higher temperatures.Overall, our findings highlight how tree growth can be interactively determined by glo-bal‐change drivers, and how these growth responses might be modulated by past for-est management. By showing future growth changes for scenarios of environmentalchange, we stress the importance of considering multiple drivers, including past man-agement and their interactions, when predicting tree growth. KW - basal area increment KW - climate change KW - Fagus KW - Fraxinus KW - historical ecology KW - nitrogen deposition KW - Quercus KW - tree-ring analysis Y1 - 2018 U6 - https://doi.org/10.1111/gcb.14493 SN - 1354-1013 SN - 1365-2486 VL - 25 IS - 1 SP - 201 EP - 217 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Palmer, Matthew D. A1 - Gregory, Jonathan A1 - Bagge, Meike A1 - Calvert, Daley A1 - Hagedoorn, Jan Marius A1 - Howard, Tom A1 - Klemann, Volker A1 - Lowe, Jason A. A1 - Roberts, Chris A1 - Slangen, Aimee B. A. A1 - Spada, Giorgio T1 - Exploring the drivers of global and local sea‐level change over the 21st century and beyond JF - Earth's future N2 - We present a new set of global and local sea‐level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5‐based sea‐level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea‐level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea‐level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea‐level change in the coming decades and the potential value of annual‐to‐decadal predictions of local sea‐level change. Projections to 2300 show a substantial degree of committed sea‐level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post‐2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario. KW - climate change KW - CMIP5 models KW - RCP scenarios KW - sea-level projections KW - tide gauge observations Y1 - 2020 U6 - https://doi.org/10.1029/2019EF001413 SN - 2328-4277 VL - 8 IS - 9 SP - 1 EP - 25 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Seifert, Linda I. A1 - Weithoff, Guntram A1 - Vos, Matthijs T1 - Extreme heat changes post-heat wave community reassembly JF - Ecology and evolution N2 - Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29 degrees C and 39 degrees C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39 degrees C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29 degrees C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re-introduction programs and to our ability to restore ecosystems damaged by environmental extremes. KW - Biodiversity KW - climate change KW - conservation KW - ecological restoration KW - extinction KW - extreme temperature events KW - global warming KW - maximum temperature KW - variability Y1 - 2015 U6 - https://doi.org/10.1002/ece3.1490 SN - 2045-7758 VL - 5 IS - 11 SP - 2140 EP - 2148 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kellermann, Patric A1 - Bubeck, Philip A1 - Kundela, Guenther A1 - Dosio, Alessandro A1 - Thieken, Annegret T1 - Frequency Analysis of Critical Meteorological Conditions in a Changing ClimateAssessing Future Implications for Railway Transportation in Austria JF - Climate : open access journal N2 - Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite. KW - climate change KW - critical meteorological condition KW - frequency analysis KW - natural hazard management KW - railway transportation Y1 - 2016 U6 - https://doi.org/10.3390/cli4020025 SN - 2225-1154 VL - 4 SP - 914 EP - 931 PB - MDPI CY - Basel ER - TY - JOUR A1 - Grimm-Seyfarth, Annegret A1 - Mihoub, Jean-Baptiste A1 - Henle, Klaus T1 - Functional traits determine the different effects of prey, predators, and climatic extremes on desert reptiles JF - Ecosphere : the magazine of the International Ecology University N2 - Terrestrial reptiles are particularly vulnerable to climate change. Their highest density and diversity can be found in hot drylands, ecosystems which demonstrate extreme climatic conditions. However, reptiles are not isolated systems but part of a large species assemblage with many trophic dependencies. While direct relations among climatic conditions, invertebrates, vegetation, or reptiles have already been explored, to our knowledge, species’ responses to direct and indirect pathways of multiple climatic and biotic factors and their interactions have rarely been examined comprehensively. We investigated direct and indirect effects of climatic and biotic parameters on the individual (body condition) and population level (occupancy) of eight abundant lizard species with different functional traits in an arid Australian lizard community using a 30‐yr multi‐trophic monitoring study. We used structural equation modeling to disentangle single and interactive effects. We then assessed whether species could be grouped into functional groups according to their functional traits and their responses to different parameters. We found that lizard species differed strongly in how they responded to climatic and biotic factors. However, the factors to which they responded seemed to be determined by their functional traits. While responses on body condition were determined by habitat, activity time, and prey, responses on occupancy were determined by habitat specialization, body size, and longevity. Our findings highlight the importance of indirect pathways through climatic and biotic interactions, which should be included into predictive models to increase accuracy when predicting species’ responses to climate change. Since one might never obtain all mechanistic pathways at the species level, we propose an approach of identifying relevant species traits that help grouping species into functional groups at different ecological levels, which could then be used for predictive modeling. KW - Australia KW - climate change KW - Gekkonidae KW - periodic flooding KW - Scincidae KW - species functional traits KW - species interactions KW - structural equation modeling Y1 - 2019 U6 - https://doi.org/10.1002/ecs2.2865 SN - 2150-8925 VL - 10 IS - 9 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim A1 - Frieler, Katja A1 - Eliseev, Alexey V. A1 - Levermann, Anders T1 - Future changes in extratropical storm tracks and baroclinicity under climate change JF - Environmental research letters N2 - The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions. KW - storm tracks KW - baroclinicity KW - climate change Y1 - 2014 U6 - https://doi.org/10.1088/1748-9326/9/8/084002 SN - 1748-9326 VL - 9 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Baeten, Lander A1 - Midolo, Gabriele A1 - Blondeel, Haben A1 - Depauw, Leen A1 - Landuyt, Dries A1 - Maes, Sybryn L. A1 - De Lombaerde, Emiel A1 - Caron, Maria Mercedes A1 - Vellend, Mark A1 - Brunet, Joerg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Dirnboeck, Thomas A1 - Doerfler, Inken A1 - Durak, Tomasz A1 - De Frenne, Pieter A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Lenoir, Jonathan A1 - Li, Daijiang A1 - Malis, Frantisek A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Petrik, Petr A1 - Reczynska, Kamila A1 - Schmidt, Wolfgang A1 - Standovar, Tibor A1 - Swierkosz, Krzysztof A1 - Van Calster, Hans A1 - Vild, Ondrej A1 - Wagner, Eva Rosa A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Global environmental change effects on plant community composition trajectories depend upon management legacies JF - Global change biology N2 - The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites’ contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change. KW - biodiversity change KW - climate change KW - disturbance regime KW - forestREplot KW - herbaceous layer KW - management intensity KW - nitrogen deposition KW - plant functional traits KW - time lag KW - vegetation resurvey Y1 - 2017 U6 - https://doi.org/10.1111/gcb.14030 SN - 1354-1013 SN - 1365-2486 VL - 24 IS - 4 SP - 1722 EP - 1740 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Geiger, Tobias A1 - Frieler, Katja A1 - Levermann, Anders T1 - High-income does not protect against hurricane losses JF - Environmental research letters N2 - Damage due to tropical cyclones accounts for more than 50% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation's affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm's wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation. KW - climate change KW - tropical cyclones KW - damage KW - meteorological extremes KW - vulnerability Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/8/084012 SN - 1748-9326 VL - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Huang, Xiaozhong A1 - Peng, Wei A1 - Rudaya, Natalia A1 - Grimm, Eric C. A1 - Chen, Xuemei A1 - Cao, Xianyong A1 - Zhang, Jun A1 - Pan, Xiaoduo A1 - Liu, Sisi A1 - Chen, Chunzhu A1 - Chen, Fahu T1 - Holocene vegetation and climate dynamics in the Altai Mountains and Surrounding Areas JF - Geophysical research letters N2 - A comprehensive understanding of the regional vegetation responses to long-term climate change will help to forecast Earth system dynamics. Based on a new well-dated pollen data set from Kanas Lake and a review on the published pollen records in and around the Altai Mountains, the regional vegetation dynamics and forcing mechanisms are discussed. In the Altai Mountains, the forest optimum occurred during 10-7ka for the upper forest zone and the tree line decline and/or ecological shifts were caused by climatic cooling from around 7ka. In the lower forest zone, the forest reached an optimum in the middle Holocene, and then increased openness of the forest, possibly caused by both climate cooling and human activities, took place in the late Holocene. In the lower basins or plains around the Altai Mountains, the development of protograssland or forest benefited from increasing humidity in the middle to late Holocene. Plain Language Summary In the Altai Mountains and surrounding area of central Asia, the previous studies of the Holocene paleovegetation and paleoclimate studies did not discuss the different ecological limiting factors for the vegetation in high mountains and low-elevation areas due to limited data. With accumulating fossil pollen data and surface pollen data, it is possible to understand better the geomorphological effect on the vegetation and discrepancies of vegetation/forest responses to large-scale climate forcing, and it is also possible to get reliable quantitative reconstructions of climate. Here our new pollen data and review on the published fossil pollen data will help us to look into the past climate change and vertical evolution of vegetation in this important area of the Northern Hemisphere. Based on our study, it can be concluded that the growth of taiga forest in the wetter areas may be promoted under a future warmer climate, while the forest in the relatively dry areas is liable to decline, and the different vegetation dynamics will contribute to future high-resolution coupled vegetation-climate model for Earth system modelling. KW - climate change KW - Kanas Lake KW - Altai Mountains KW - vegetation dynamics KW - taiga forest Y1 - 2018 U6 - https://doi.org/10.1029/2018GL078028 SN - 0094-8276 SN - 1944-8007 VL - 45 IS - 13 SP - 6628 EP - 6636 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Sælen, Håkon A1 - Hovi, Jon A1 - Sprinz, Detlef F. A1 - Underdal, Arild T1 - How US withdrawal might influence cooperation under the Paris climate agreement JF - Environmental science & policy N2 - Using a novel agent-based model, we study how US withdrawal might influence the political process established by the Paris Agreement, and hence the prospects for reaching the collective goal to limit warming below 2 degrees C. Our model enables us to analyze to what extent reaching this goal despite US withdrawal would place more stringent requirements on other core elements of the Paris cooperation process. We find, first, that the effect of a US withdrawal depends critically on the extent to which member countries reciprocate others' promises and contributions. Second, while the 2 degrees C goal will likely be reached only under a very small set of conditions in any event, even temporary US withdrawal will further narrow this set significantly. Reaching this goal will then require other countries to step up their ambition at the first opportunity and to comply nearly 100% with their pledges, while maintaining high confidence in the Paris Agreements institutions. Third, although a US withdrawal will first primarily affect the United States' own emissions, it will eventually prove even more detrimental to other countries' emissions. KW - climate change KW - Paris agreement KW - President Trump KW - 2 degrees C target KW - agent-based modeling KW - reciprocity Y1 - 2020 U6 - https://doi.org/10.1016/j.envsci.2020.03.011 SN - 1462-9011 SN - 1873-6416 VL - 108 SP - 121 EP - 132 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Sarmento, Juliano Sarmento A1 - Jeltsch, Florian A1 - Thuiller, Wilfried A1 - Higgins, Steven A1 - Midgley, Guy F. A1 - Rebelo, Anthony G. A1 - Rouget, Mathieu A1 - Schurr, Frank Martin T1 - Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae JF - Diversity & distributions : a journal of biological invasions and biodiversity N2 - Aim To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change. Location South African Cape Floristic Region. Methods We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat. Results Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography. Main conclusions Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography. KW - biodiversity refugia KW - CFR Proteaceae KW - climate change KW - demographic properties KW - habitat loss KW - local abundances KW - process-based range models KW - range filling KW - range size KW - species distribution models Y1 - 2013 U6 - https://doi.org/10.1111/ddi.12011 SN - 1366-9516 VL - 19 IS - 4 SP - 363 EP - 376 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Wulf, Hendrik A1 - Preusser, Frank A1 - Strecker, Manfred T1 - Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India JF - Earth & planetary science letters N2 - The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and Be-10-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of similar to 2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates. (C) 2015 Elsevier B.V. All rights reserved. KW - paleo-erosion rates KW - climate change KW - river terraces KW - landscape evolution KW - hillslopes KW - Himalaya Y1 - 2015 U6 - https://doi.org/10.1016/j.epsl.2015.06.034 SN - 0012-821X SN - 1385-013X VL - 428 SP - 255 EP - 266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Krol, Maarten A1 - Jaeger, Annekathrin A1 - Bronstert, Axel A1 - Güntner, Andreas T1 - Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil JF - Journal of hydrology N2 - Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved. KW - integrated modelling KW - integrated river basin management KW - water resources management KW - semi-arid hydrology KW - climate change Y1 - 2006 U6 - https://doi.org/10.1016/j.jhydrol.2005.12.021 SN - 0022-1694 VL - 328 IS - 3-4 SP - 417 EP - 431 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Katzenberger, Anja A1 - Levermann, Anders A1 - Schewe, Jacob A1 - Pongratz, Julia T1 - Intensification of very wet monsoon seasons in India under global warming JF - Geophysical research letters N2 - Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase. KW - Indian monsoon KW - climate modeling KW - extreme seasons KW - climate change KW - CMIP6 KW - India Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098856 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 15 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, J. A1 - Chabrerie, Olivier A1 - Cousins, S. A. O. A1 - De Backer, L. A1 - Decocq, G. A1 - Diekmann, M. A1 - Heinken, Thilo A1 - Kolb, A. A1 - Naaf, T. A1 - Plue, J. A1 - Selvi, Federico A1 - Strimbeck, G. R. A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides JF - Plant biology N2 - Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change. KW - Acer platanoides KW - Acer pseudoplatanus KW - climate change KW - drought KW - reproduction KW - seed KW - temperature Y1 - 2015 U6 - https://doi.org/10.1111/plb.12177 SN - 1435-8603 SN - 1438-8677 VL - 17 IS - 1 SP - 52 EP - 62 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Huggel, Christian A1 - Clague, John J. A1 - Korup, Oliver T1 - Is climate change responsible for changing landslide activity in high mountains? JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de-glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non-linear response of firn and ice to warming; three-dimensional warming of subsurface bedrock and its relation to site geology; de-glaciation accompanied by exposure of new sediment; and combined short-term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag-time effects. KW - climate change KW - landslides KW - glaciers KW - permafrost Y1 - 2012 U6 - https://doi.org/10.1002/esp.2223 SN - 0197-9337 VL - 37 IS - 1 SP - 77 EP - 91 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Berry, Paul E. A1 - Dammhahn, Melanie A1 - Blaum, Niels T1 - Keeping cool on hot days BT - activity responses of African antelope to heat extremes JF - Frontiers in ecology and evolution N2 - Long-lived organisms are likely to respond to a rapidly changing climate with behavioral flexibility. Animals inhabiting the arid parts of southern Africa face a particularly rapid rise in temperature which in combination with food and water scarcity places substantial constraints on the ability of animals to tolerate heat. We investigated how three species of African antelope-springbok Antidorcas marsupialis, kudu Tragelaphus strepsiceros and eland T. oryx-differing in body size, habitat preference and movement ecology, change their activity in response to extreme heat in an arid savanna. Serving as a proxy for activity, dynamic body acceleration data recorded every five minutes were analyzed for seven to eight individuals per species for the three hottest months of the year. Activity responses to heat during the hottest time of day (the afternoons) were investigated and diel activity patterns were compared between hot and cool days. Springbok, which prefer open habitat, are highly mobile and the smallest of the species studied, showed the greatest decrease in activity with rising temperature. Furthermore, springbok showed reduced mean activity over the 24 h cycle on hot days compared to cool days. Large-bodied eland seemed less affected by afternoon heat than springbok. While eland also reduced diurnal activity on hot days compared to cool days, they compensated for this by increasing nocturnal activity, possibly because their predation risk is lower. Kudu, which are comparatively sedentary and typically occupy shady habitat, seemed least affected during the hottest time of day and showed no appreciable difference in diel activity patterns between hot and cool days. The interplay between habitat preference, body size, movement patterns, and other factors seems complex and even sub-lethal levels of heat stress have been shown to impact an animal's long-term survival and reproduction. Thus, differing heat tolerances among species could result in a shift in the composition of African herbivore communities as temperatures continue to rise, with significant implications for economically important wildlife-based land use and conservation. KW - springbok KW - kudu KW - eland KW - dynamic body acceleration KW - tri-axial accelerometers KW - behavioral flexibility KW - climate change KW - savanna ecology Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1172303 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Leins, Johannes A. A1 - Grimm, Volker A1 - Drechsler, Martin T1 - Large-scale PVA modeling of insects in cultivated grasslands BT - the role of dispersal in mitigating the effects of management schedules under climate change JF - Ecology and evolution N2 - In many species, dispersal is decisive for survival in a changing climate. Simulation models for population dynamics under climate change thus need to account for this factor. Moreover, large numbers of species inhabiting agricultural landscapes are subject to disturbances induced by human land use. We included dispersal in the HiLEG model that we previously developed to study the interaction between climate change and agricultural land use in single populations. Here, the model was parameterized for the large marsh grasshopper (LMG) in cultivated grasslands of North Germany to analyze (1) the species development and dispersal success depending on the severity of climate change in subregions, (2) the additional effect of grassland cover on dispersal success, and (3) the role of dispersal in compensating for detrimental grassland mowing. Our model simulated population dynamics in 60-year periods (2020-2079) on a fine temporal (daily) and high spatial (250 x 250 m(2)) scale in 107 subregions, altogether encompassing a range of different grassland cover, climate change projections, and mowing schedules. We show that climate change alone would allow the LMG to thrive and expand, while grassland cover played a minor role. Some mowing schedules that were harmful to the LMG nevertheless allowed the species to moderately expand its range. Especially under minor climate change, in many subregions dispersal allowed for mowing early in the year, which is economically beneficial for farmers. More severe climate change could facilitate LMG expansion to uninhabited regions but would require suitable mowing schedules along the path. These insights can be transferred to other species, given that the LMG is considered a representative of grassland communities. For more specific predictions on the dynamics of other species affected by climate change and land use, the publicly available HiLEG model can be easily adapted to the characteristics of their life cycle. KW - bilinear interpolation KW - climate change KW - dispersal success KW - land use KW - large marsh grasshopper KW - spatially explicit model Y1 - 2022 U6 - https://doi.org/10.1002/ece3.9063 SN - 2045-7758 VL - 12 IS - 7 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Böhnke, Denise A1 - Krehl, Alice A1 - Moermann, Kai A1 - Volk, Rebekka A1 - Lützkendorf, Thomas A1 - Naber, Elias A1 - Becker, Ronja A1 - Norra, Stefan T1 - Mapping urban green and its ecosystem services at microscale-a methodological approach for climate adaptation and biodiversity JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m(2)] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed. KW - climate adaptation KW - urban green KW - mapping KW - ecosystem service cascade KW - model KW - surface type-function-concept KW - planning indicators KW - city district KW - level KW - urban planning practice KW - climate change Y1 - 2022 U6 - https://doi.org/10.3390/su14159029 SN - 2071-1050 VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - De Frenne, Pieter A1 - Rodriguez-Sanchez, Francisco A1 - Coomes, David Anthony A1 - Bäten, Lander A1 - Versträten, Gorik A1 - Vellend, Mark A1 - Bernhardt-Römermann, Markus A1 - Brown, Carissa D. A1 - Brunet, Jörg A1 - Cornelis, Johnny A1 - Decocq, Guillaume M. A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jenkins, Michael A. A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schultz, Jan A1 - Sonnier, Gregory A1 - Van Calster, Hans A1 - Waller, Donald M. A1 - Walther, Gian-Reto A1 - White, Peter S. A1 - Woods, Kerry D. A1 - Wulf, Monika A1 - Graae, Bente Jessen A1 - Verheyen, Kris T1 - Microclimate moderates plant responses to macroclimate warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity. KW - climate change KW - forest management KW - understory KW - climatic debt KW - range shifts Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1311190110 SN - 0027-8424 VL - 110 IS - 46 SP - 18561 EP - 18565 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Loeffler, Jörg A1 - Anschlag, Kerstin A1 - Baker, Barry A1 - Finch, Oliver-D. A1 - Diekkrueger, Bernd A1 - Wundram, Dirk A1 - Schroeder, Boris A1 - Pape, Roland A1 - Lundberg, Anders T1 - Mountain ecosystem response to global change JF - Erdkunde : archive for scientific geography N2 - Mountain ecosystems are commonly regarded as being highly sensitive to global change. Due to the system complexity and multifaceted interacting drivers, however, understanding current responses and predicting future changes in these ecosystems is extremely difficult. We aim to discuss potential effects of global change on mountain ecosystems and give examples of the underlying response mechanisms as they are understood at present. Based on the development of scientific global change research in mountains and its recent structures, we identify future research needs, highlighting the major lack and the importance of integrated studies that implement multi-factor, multi-method, multi-scale, and interdisciplinary research. KW - High mountain ecology KW - arctic-alpine environments KW - climate change KW - land use and land cover change KW - tree line alteration KW - range shifts KW - altitudinal zonation Y1 - 2011 U6 - https://doi.org/10.3112/erdkunde.2011.02.06 SN - 0014-0015 VL - 65 IS - 2 SP - 189 EP - 213 PB - Geographisches Inst., Univ. Bonn CY - Goch ER - TY - JOUR A1 - Guzman Arias, Diego Alejandro A1 - Samprogna Mohor, Guilherme A1 - Mendiondo, Eduardo Mario T1 - Multi-driver ensemble to evaluate the water utility business interruption cost induced by hydrological drought risk scenarios in Brazil JF - Urban water journal N2 - Climate change and increasing water demand in urban environments necessitate planning water utility companies' finances. Traditionally, methods to estimate the direct water utility business interruption costs (WUBIC) caused by droughts have not been clearly established. We propose a multi-driver assessment method. We project the water yield using a hydrological model driven by regional climate models under radiative forcing scenarios. We project water demand under stationary and non-stationary conditions to estimate drought severity and duration, which are linked with pricing policies recently adopted by the Sao Paulo Water Utility Company. The results showed water insecurity. The non-stationary trend imposed larger differences in the drought resilience financial gap, suggesting that the uncertainties of WUBIC derived from demand and climate models are greater than those associated with radiative forcing scenarios. As populations increase, proactively controlling demand is recommended to avoid or minimize reactive policy changes during future drought events, repeating recent financial impacts. KW - Business interruption cost KW - water utility company KW - hydrological KW - droughts KW - water security KW - urban water KW - climate change Y1 - 2022 U6 - https://doi.org/10.1080/1573062X.2022.2058564 SN - 1573-062X SN - 1744-9006 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Guzman, Diego A. A1 - Samprogna Mohor, Guilherme A1 - Mendiondo, Eduardo Mario T1 - Multi-year index-based insurance for adapting Water Utility Companies to hydrological drought BT - case study of a water supply system of the Sao Paulo metropolitan region, Brazil JF - Water N2 - The sustainability of water utility companies is threatened by non-stationary drivers, such as climate and anthropogenic changes. To cope with potential economic losses, instruments such as insurance are useful for planning scenarios and mitigating impacts, but data limitations and risk uncertainties affect premium estimation and, consequently, business sustainability. This research estimated the possible economic impacts of business interruption to the Sao Paulo Water Utility Company derived from hydrological drought and how this could be mitigated with an insurance scheme. Multi-year insurance (MYI) was proposed through a set of "change" drivers: the climate driver, through forcing the water evaluation and planning system (WEAP) hydrological tool; the anthropogenic driver, through water demand projections; and the economic driver, associated with recent water price policies adopted by the utility company during water scarcity periods. In our study case, the evaluated indices showed that MYI contracts that cover only longer droughts, regardless of the magnitude, offer better financial performance than contracts that cover all events (in terms of drought duration). Moreover, through MYI contracts, we demonstrate solvency for the insurance fund in the long term and an annual average actuarially fair premium close to the total expected revenue reduction. KW - multi-year insurance KW - climate change KW - hydrological drought KW - water KW - security and economy Y1 - 2020 U6 - https://doi.org/10.3390/w12112954 SN - 2073-4441 VL - 12 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wenz, Leonie A1 - Levermann, Anders A1 - Auffhammer, Maximilian T1 - North-south polarization of European electricity consumption under future warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply sidethrough the mitigation of greenhouse gasesand from the demand sidethrough adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the worlds third-largest electricity marketthe 35 countries of Europe. We statistically estimate country-level doseresponse functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common doseresponse function, which we use to compute national electricity loads for temperatures that lie outside each countrys currently observed temperature range. To this end, we impose end-of-century climate on todays European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigationin line with the Paris agreementto unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (similar to 3 to similar to 7% for Portugal and Spain) and significant decreases in northern Europe (similar to-6 to similar to-2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity. KW - electricity consumption KW - peak load KW - climate change KW - adaptation Y1 - 2017 U6 - https://doi.org/10.1073/pnas.1704339114 SN - 0027-8424 VL - 114 SP - E7910 EP - E7918 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic JF - Energies N2 - The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s. KW - gas hydrate KW - permafrost KW - methane KW - faults KW - climate change KW - Mallik KW - numerical simulations Y1 - 2022 U6 - https://doi.org/10.3390/en15144986 SN - 1996-1073 VL - 15 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Drewes, Julia A1 - Moreiras, Stella A1 - Korup, Oliver T1 - Permafrost activity and atmospheric warming in the Argentinian Andes JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Rock glaciers are permafrost or glacial landforms of debris and ice that deform under the influence of gravity. Recent estimates hold that, in the semiarid Chilean Andes for example, active rock glaciers store more water than glaciers. However, little is known about how many rock glaciers might decay because of global warming and how much this decay might contribute to water and sediment release. We investigated an inventory of >6500 rock glaciers in the Argentinian Andes, spanning the climatic gradient from the Desert Andes to cold-temperate Tierra del Fuego. We used active rock glaciers as a diagnostic of permafrost, assuming that the toes mark the 0 degrees C isotherm in climate scenarios for the twenty-first century and their impact on freezing conditions near the rock glacier toes. We find that, under future worst case warming, up to 95% of rock glaciers in the southern Desert Andes and in the Central Andes will rest in areas above 0 degrees C and that this freezing level might move up more than twice as much (similar to 500 m) as during the entire Holocene (similar to 200 m). Many active rock glaciers are already well below the current freezing level and exemplify how local controls may confound regional prognoses. A Bayesian Multifactor Analysis of Variance further shows that only in the Central Andes are the toes of active rock glaciers credibly higher than those of inactive ones. Elsewhere in the Andes, active and inactive rock glaciers occupy indistinguishable elevation bands, regardless of aspect, the formation mechanism, or shape of rock glaciers. The state of rock glacier activity predicts differences in elevations of toes to 140 m at best so that regional inference of the distribution of discontinuous permafrost from rock-glacier toes cannot be more accurate than this in the Argentinian Andes. We conclude that the Central Andes-where rock glaciers are largest, cover the most area, and have a greater density than glaciers-is likely to experience the most widespread disturbance to the thermal regime of the twenty-first century. (C) 2018 Elsevier B.V. All rights reserved. KW - rock glacier KW - Argentina KW - permafrost KW - climate change Y1 - 2018 U6 - https://doi.org/10.1016/j.geomorph.2018.09.005 SN - 0169-555X SN - 1872-695X VL - 323 SP - 13 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Epp, Laura Saskia A1 - Herzschuh, Ulrike T1 - Phylogenetic diversity and environment form assembly rules for Arctic diatom genera BT - a study on recent and ancient sedimentary DNA JF - Journal of Biogeography N2 - Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming. KW - ancient sedimentary DNA KW - Arctic lakes KW - assembly rules KW - climate change KW - diatoms KW - environmental filtering KW - phylogenetic diversity KW - Siberian tree line Y1 - 2020 U6 - https://doi.org/10.1111/jbi.13786 SN - 0305-0270 SN - 1365-2699 VL - 47 IS - 5 SP - 1166 EP - 1179 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton community responses to interactions between light intensity, light variations, and phosphorus supply JF - Frontiers in Environmental Science N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.539733 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply JF - Frontiers in Environmental Science N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.539733 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Mogrovejo Arias, Diana Carolina A1 - Brill, Florian H. H. A1 - Wagner, Dirk T1 - Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen, Svalbard JF - Environmental earth sciences N2 - The Arctic ecosystem, a reservoir of genetic microbial diversity, represents a virtually unlimited source of microorganisms that could interact with human beings. Despite continuous exploration of Arctic habitats and description of their microbial communities, bacterial phenotypes commonly associated with pathogenicity, such as hemolytic activity, have rarely been reported. In this study, samples of snow, fresh and marine water, soil, and sediment from several habitats in the Arctic archipelago of Svalbard were collected during Summer, 2017. Bacterial isolates were obtained after incubation on oligotrophic media at different temperatures and their hemolytic potential was assessed on sheep blood agar plates. Partial (alpha) or true (beta) hemolysis was observed in 32 out of 78 bacterial species. Genes expressing cytolytic compounds, such as hemolysins, likely increase the general fitness of the producing microorganisms and confer a competitive advantage over the availability of nutrients in natural habitats. In environmental species, the nutrient-acquisition function of these compounds presumably precedes their function as toxins for mammalian erythrocytes. However, in the light of global warming, the presence of hemolytic bacteria in Arctic environments highlights the possible risks associated with these microorganisms in the event of habitat melting/destruction, ecosystem transition, and re-colonization. KW - Arctic KW - Svalbard KW - hemolysins KW - climate change KW - pathogens KW - virulence Y1 - 2020 U6 - https://doi.org/10.1007/s12665-020-8853-4 SN - 1866-6280 SN - 1866-6299 VL - 79 IS - 5 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Chan, Sander A1 - Boran, Idil A1 - van Asselt, Harro A1 - Iacobuta, Gabriela A1 - Niles, Navam A1 - Rietig, Katharine A1 - Scobie, Michelle A1 - Bansard, Jennifer S. A1 - Delgado Pugley, Deborah A1 - Delina, Laurence L. A1 - Eichhorn, Friederike A1 - Ellinger, Paula A1 - Enechi, Okechukwu A1 - Hale, Thomas A1 - Hermwille, Lukas A1 - Hickmann, Thomas A1 - Honegger, Matthias A1 - Hurtado Epstein, Andrea A1 - Theuer, Stephanie La Hoz A1 - Mizo, Robert A1 - Sun, Yixian A1 - Toussaint, Patrick A1 - Wambugu, Geoffrey T1 - Promises and risks of nonstate action in climate and sustainability governance JF - Wiley interdisciplinary reviews : Climate change KW - climate change KW - governance KW - nonstate actions KW - SDGs KW - sustainable development Y1 - 2019 U6 - https://doi.org/10.1002/wcc.572 SN - 1757-7780 SN - 1757-7799 VL - 10 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Imholt, Christian A1 - Reil, Daniela A1 - Eccard, Jana A1 - Jacob, Daniela A1 - Hempelmann, Nils A1 - Jacob, Jens T1 - Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus) JF - Pest management science N2 - BACKGROUND Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. RESULTS Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. CONCLUSION Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. (c) 2014 Society of Chemical Industry KW - climate change KW - population dynamics KW - bank vole KW - regression tree KW - outbreak Y1 - 2015 U6 - https://doi.org/10.1002/ps.3838 SN - 1526-498X SN - 1526-4998 VL - 71 IS - 2 SP - 166 EP - 172 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Pan, Xiaohui A1 - Wang, Weishi A1 - Liu, Tie A1 - Huang, Yue A1 - De Maeyer, Philippe A1 - Guo, Chenyu A1 - Ling, Yunan A1 - Akmalov, Shamshodbek T1 - Quantitative detection and attribution of groundwater level variations in the Amu Darya Delta JF - Water N2 - In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from -189 cm to -350 cm. Until 2017, the groundwater level rose back to -211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: -0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection. KW - groundwater level variation KW - climate change KW - human activities KW - statistical analysis KW - Amu Darya Delta Y1 - 2020 U6 - https://doi.org/10.3390/w12102869 SN - 2073-4441 VL - 12 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tesselaar, Max A1 - Botzen, W. J. Wouter A1 - Haer, Toon A1 - Hudson, Paul A1 - Tiggeloven, Timothy A1 - Aerts, Jeroen C. J. H. T1 - Regional inequalities in flood insurance affordability and uptake under climate change JF - Sustainability N2 - Flood insurance coverage can enhance financial resilience of households to changing flood risk caused by climate change. However, income inequalities imply that not all households can afford flood insurance. The uptake of flood insurance in voluntary markets may decline when flood risk increases as a result of climate change. This increase in flood risk may cause substantially higher risk-based insurance premiums, reduce the willingness to purchase flood insurance, and worsen problems with the unaffordability of coverage for low-income households. A socio-economic tipping-point can occur when the functioning of a formal flood insurance system is hampered by diminishing demand for coverage. In this study, we examine whether such a tipping-point can occur in Europe for current flood insurance systems under different trends in future flood risk caused by climate and socio-economic change. This analysis gives insights into regional inequalities concerning the ability to continue to use flood insurance as an instrument to adapt to changing flood risk. For this study, we adapt the "Dynamic Integrated Flood and Insurance" (DIFI) model by integrating new flood risk simulations in the model that enable examining impacts from various scenarios of climate and socio-economic change on flood insurance premiums and consumer demand. Our results show rising unaffordability and declining demand for flood insurance across scenarios towards 2080. Under a high climate change scenario, simulations show the occurrence of a socio-economic tipping-point in several regions, where insurance uptake almost disappears. A tipping-point and related inequalities in the ability to use flood insurance as an adaptation instrument can be mitigated by introducing reforms of flood insurance arrangements. KW - climate change KW - flood risk management KW - insurance KW - socio-economic KW - tipping-point KW - adaptation KW - partial equilibrium modeling Y1 - 2020 U6 - https://doi.org/10.3390/su12208734 SN - 2071-1050 VL - 12 IS - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kong, Xiangzhen A1 - Ghaffar, Salman A1 - Determann, Maria A1 - Friese, Kurt A1 - Jomaa, Seifeddine A1 - Mi, Chenxi A1 - Shatwell, Tom A1 - Rinke, Karsten A1 - Rode, Michael T1 - Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change JF - Water research : a journal of the International Association on Water Quality (IAWQ) N2 - Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso- and eutrophic), both of which drain into the largest drinking water reservoir in Germany. Due to the prolonged droughts in 2015-2018, the catchment of the mesotrophic reservoir lost an unprecedented area of forest (exponential increase since 2015 and ca. 17.1% loss in 2020 alone). We coupled catchment nutrient exports (HYPE) and reservoir ecosystem dynamics (GOTM-WET) models using a process-based modeling approach. The coupled model was validated with datasets spanning periods of rapid deforestation, which makes our future projections highly robust. Results show that in a short-term time scale (by 2035), increasing nutrient flux from the catchment due to vast deforestation (80% loss) can turn the mesotrophic reservoir into a eutrophic state as its counterpart. Our results emphasize the more prominent impacts of deforestation than the direct impact of climate warming in impairment of water quality and ecological services to downstream aquatic ecosystems. Therefore, we propose to evaluate the impact of climate change on temperate reservoirs by incorporating a time scale-dependent context, highlighting the indirect impact of deforestation in the short-term scale. In the long-term scale (e.g. to 2100), a guiding hypothesis for future research may be that indirect effects (e.g., as mediated by catchment dynamics) are as important as the direct effects of climate warming on aquatic ecosystems. KW - deforestation KW - climate change KW - temperate regions KW - reservoir KW - eutrophication KW - process-based modeling Y1 - 2022 U6 - https://doi.org/10.1016/j.watres.2022.118721 SN - 0043-1354 SN - 1879-2448 VL - 221 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Kuhla, Kilian A1 - Willner, Sven N. A1 - Otto, Christian A1 - Geiger, Tobias A1 - Levermann, Anders T1 - Ripple resonance amplifies economic welfare loss from weather extremes JF - Environmental research letters : ERL / Institute of Physics N2 - The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts. KW - consecutive disasters KW - economic ripple resonance KW - repercussion resonance KW - weather extremes KW - supply network KW - climate impacts KW - climate change Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac2932 SN - 1748-9326 VL - 16 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Reibold, Kerstin T1 - Settler Colonialism, Decolonization, and Climate Change JF - Journal of applied philosophy N2 - The article proposes that climate change makes enduring colonial injustices and structures visible. It focuses on the imposition and dominance of colonial concepts of land and self-determination on Indigenous peoples in settler states. It argues that if the dominance of these colonial frameworks remains unaddressed, the progressing climate change will worsen other colonial injustices, too. Specifically, Indigenous self-determination capabilities will be increasingly undermined, and Indigenous peoples will experience the loss of what they understand as relevant land from within their own ontologies of land. The article holds that even if settler states strive to repair colonial injustices, these efforts will be unsuccessful if climate change occurs and decolonization is pursued within the framework of a settler colonial ontology of land. Therefore, the article suggests, decolonization of the ontologies of land and concepts of self-determination is a precondition for a just response to climate change. KW - territorial rights KW - indigenous rights KW - climate change KW - colonialism Y1 - 2022 U6 - https://doi.org/10.1111/japp.12573 SN - 0264-3758 SN - 1468-5930 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Mielke, Jahel T1 - Signals for 2 degrees C BT - the influence of policies, market factors and civil society actions on investment decisions for green infrastructure JF - Journal of Sustainable Finance & Investment N2 - The targets of the Paris Agreement make it necessary to redirect finance flows towards sustainable, low-carbon infrastructures and technologies. Currently, the potential of institutional investors to help finance this transition is widely discussed. Thus, this paper takes a closer look at influence factors for green investment decisions of large European insurance companies. With a mix of qualitative and quantitative methods, the importance of policy, market and civil society signals is evaluated. In summary, respondents favor measures that promote green investment, such as feed-in tariffs or adjustments of capital charges for green assets, over ones that make carbon-intensive investments less attractive, such as the phase-out of fossil fuel subsidies or a carbon price. While investors currently see a low impact of the carbon price, they rank a substantial reform as an important signal for the future. Respondents also emphasize that policy signals have to be coherent and credible to coordinate expectations. KW - Green infrastructure investment KW - policy signals KW - green finance KW - climate change KW - institutional investors Y1 - 2019 U6 - https://doi.org/10.1080/20430795.2018.1528809 SN - 2043-0795 SN - 2043-0809 VL - 9 IS - 2 SP - 87 EP - 115 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Grimm-Seyfarth, Annegret A1 - Mihoub, Jean-Baptiste A1 - Gruber, Bernd A1 - Henle, Klaus T1 - Some like it hot BT - from individual to population responses of an arboreal arid-zone gecko to local and distant climate JF - Ecological monographs N2 - Accumulating evidence has demonstrated considerable impact of climate change on biodiversity, with terrestrial ectotherms being particularly vulnerable. While climate-induced range shifts are often addressed in the literature, little is known about the underlying ecological responses at individual and population levels. Using a 30-yr monitoring study of the long-living nocturnal gecko Gehyra variegata in arid Australia, we determined the relative contribution of climatic factors acting locally (temperature, rainfall) or distantly (La Nina induced flooding) on ecological processes ranging from traits at the individual level (body condition, body growth) to the demography at population level (survival, sexual maturity, population sizes). We also investigated whether thermoregulatory activity during both active (night) and resting (daytime) periods of the day can explain these responses. Gehyra variegata responded to local and distant climatic effects. Both high temperatures and high water availability enhanced individual and demographic parameters. Moreover, the impact of water availability was scale independent as local rainfall and La Nina induced flooding compensated each other. When water availability was low, however, extremely high temperatures delayed body growth and sexual maturity while survival of individuals and population sizes remained stable. This suggests a trade-off with traits at the individual level that may potentially buffer the consequences of adverse climatic conditions at the population level. Moreover, hot temperatures did not impact nocturnal nor diurnal behavior. Instead, only cool temperatures induced diurnal thermoregulatory behavior with individuals moving to exposed hollow branches and even outside tree hollows for sun-basking during the day. Since diurnal behavioral thermoregulation likely induced costs on fitness, this could decrease performance at both individual and population level under cool temperatures. Our findings show that water availability rather than high temperature is the limiting factor in our focal population of G.variegata. In contrast to previous studies, we stress that drier rather than warmer conditions are expected to be detrimental for nocturnal desert reptiles. Identifying the actual limiting climatic factors at different scales and their functional interactions at different ecological levels is critical to be able to predict reliably future population dynamics and support conservation planning in arid ecosystems. KW - behavioral adaptation KW - body condition KW - body growth rate KW - climate change KW - El Nino Southern Oscillation (ENSO) KW - Gehyra variegata KW - population dynamics KW - population size KW - survival KW - thermoregulation Y1 - 2018 U6 - https://doi.org/10.1002/ecm.1301 SN - 0012-9615 SN - 1557-7015 VL - 88 IS - 3 SP - 336 EP - 352 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Coch, Caroline A1 - Lamoureux, Scott F. A1 - Knoblauch, Christian A1 - Eischeid, Isabell A1 - Fritz, Michael A1 - Obu, Jaroslav A1 - Lantuit, Hugues T1 - Summer rainfall dissolved organic carbon, solute, and sediment fluxes in a small Arctic coastal catchment on Herschel Island (Yukon Territory, Canada) JF - Artic science N2 - Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could bemobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014-2016, mean dissolved organic matter flux over 17 days amounted to 82.7 +/- 30.7 kg km(-2) and mean total dissolved solids flux to 5252 +/- 1224 kg km(-2). Flux of suspended sediment was 7245 kg km(-2) in 2015, and 369 kg km(-2) in 2016. We found that 2.0% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes. KW - permafrost KW - hydrology KW - lateral fluxes KW - hysteresis KW - climate change Y1 - 2018 U6 - https://doi.org/10.1139/as-2018-0010 SN - 2368-7460 VL - 4 IS - 4 SP - 750 EP - 780 PB - Canadian science publishing CY - Ottawa ER - TY - JOUR A1 - Huber, Robert A1 - Rigling, Andreas A1 - Bebi, Peter A1 - Brand, Fridolin Simon A1 - Briner, Simon A1 - Buttler, Alexandre A1 - Elkin, Che A1 - Gillet, Francois A1 - Gret-Regamey, Adrienne A1 - Hirschi, Christian A1 - Lischke, Heike A1 - Scholz, Roland Werner A1 - Seidl, Roman A1 - Spiegelberger, Thomas A1 - Walz, Ariane A1 - Zimmermann, Willi A1 - Bugmann, Harald T1 - Sustainable land use in Mountain Regions under global change synthesis across scales and disciplines JF - Ecology and society : a journal of integrative science for resilience and sustainability N2 - Mountain regions provide essential ecosystem goods and services (EGS) for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1) more integrative approaches, (2) a more network-oriented management and steering of political processes that integrate local stakeholders, and (3) enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general. KW - adaptive management KW - climate change KW - ecosystem services KW - experiments KW - interdisciplinary research KW - land-use change KW - modeling KW - transdisciplinary research Y1 - 2013 U6 - https://doi.org/10.5751/ES-05499-180336 SN - 1708-3087 VL - 18 IS - 3 PB - Resilience Alliance CY - Wolfville ER - TY - JOUR A1 - Wenz, Leonie A1 - Kalkuhl, Matthias A1 - Steckel, Jan Christoph A1 - Creutzig, Felix T1 - Teleconnected food supply shocks JF - Environmental research letters N2 - The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks. KW - food security KW - trade shocks KW - vulnerability KW - climate change KW - teleconnections Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/3/035007 SN - 1748-9326 VL - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - De Frenne, Pieter A1 - Brunet, Jorg A1 - Shevtsova, Anna A1 - Kolb, Annette A1 - Graae, Bente J. A1 - Chabrerie, Olivier A1 - Cousins, Sara Ao A1 - Decocq, Guillaume A1 - De Schrijver, An A1 - Diekmann, Martin A1 - Gruwez, Robert A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Tack, Wesley A1 - Willaert, Justin A1 - Verheyen, Kris T1 - Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient JF - Global change biology N2 - Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics. KW - climate change KW - common garden experiment KW - forest understorey KW - latitude KW - local adaptation KW - open-top chambers KW - phenotypic plasticity KW - pot experiment Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02449.x SN - 1354-1013 VL - 17 IS - 10 SP - 3240 EP - 3253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Huber, Veronika A1 - Krummenauer, Linda A1 - Peña-Ortiz, Cristina A1 - Lange, Stefan A1 - Gasparrini, Antonio A1 - Vicedo-Cabrera, Ana Maria A1 - Garcia-Herrera, Ricardo A1 - Frieler, Katja T1 - Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming JF - Environmental Research N2 - Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 degrees C, 1.53% (95%CI: 0.96-2.06) at 4 degrees C, and 2.88% (95%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. KW - temperature-related mortality KW - climate change KW - Future projections KW - Germany KW - global mean temperature Y1 - 2020 U6 - https://doi.org/10.1016/j.envres.2020.109447 SN - 0013-9351 SN - 1096-0953 VL - 186 SP - 1 EP - 10 PB - Elsevier CY - San Diego, California ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021-2050 and between +131 and +388% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought KW - events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern KW - Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 VL - 4 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in Water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021–2050) and far-term period (2071–2100) with reference to 1976–2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021–2050 and between +131 and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 SP - 1 EP - 16 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Wischnewski, Juliane A1 - Kramer, Annette A1 - Kong, Zhaochen A1 - Mackay, Anson W. A1 - Simpson, Gavin L. A1 - Mischke, Steffen A1 - Herzschuh, Ulrike T1 - Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries JF - Global change biology N2 - Rapid population growth and economic development have led to increased anthropogenic pressures on the Tibetan Plateau, causing significant land cover changes with potentially severe ecological consequences. To assess whether or not these pressures are also affecting the remote montane-boreal lakes on the SE Tibetan Plateau, fossil pollen and diatom data from two lakes were synthesized. The interplay of aquatic and terrestrial ecosystem response was explored in respect to climate variability and human activity over the past 200 years. Nonmetric multidimensional scaling and Procrustes rotation analysis were undertaken to determine whether pollen and diatom responses in each lake were similar and synchronous. Detrended canonical correspondence analysis was used to develop quantitative estimates of compositional species turnover. Despite instrumental evidence of significant climatic warming on the southeastern Plateau, the pollen and diatom records indicate very stable species composition throughout their profiles and show only very subtle responses to environmental changes over the past 200 years. The compositional species turnover (0.36-0.94 SD) is relatively low in comparison to the species reorganizations known from the periods during the mid-and early-Holocene (0.64-1.61 SD) on the SE Plateau, and also in comparison to turnover rates of sediment records from climate-sensitive regions in the circum arctic. Our results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem in our study area. Synergistic processes of post-Little Ice Age warming, 20th century climate warming and extensive reforestations since the 19th century have initiated a change from natural oak-pine forests to seminatural, likely less resilient pine-oak forests. Further warming and anthropogenic disturbances would possibly exceed the ecological threshold of these ecosystems and lead to severe ecological consequences. KW - climate change KW - compositional species turnover KW - diatoms KW - human impact KW - pollen KW - Procrustes rotation KW - Tibetan Plateau Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02474.x SN - 1354-1013 VL - 17 IS - 11 SP - 3376 EP - 3391 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - van Kleunen, Mark A1 - Essl, Franz A1 - Pergl, Jan A1 - Brundu, Giuseppe A1 - Carboni, Marta A1 - Dullinger, Stefan A1 - Early, Regan A1 - Gonzalez-Moreno, Pablo A1 - Groom, Quentin J. M. A1 - Hulme, Philip E. A1 - Kueffer, Christoph A1 - Kühn, Ingolf A1 - Maguas, Cristina A1 - Maurel, Noelie A1 - Novoa, Ana A1 - Parepa, Madalin A1 - Pysek, Petr A1 - Seebens, Hanno A1 - Tanner, Rob A1 - Touza, Julia A1 - Verbrugge, Laura A1 - Weber, Ewald A1 - Dawson, Wayne A1 - Kreft, Holger A1 - Weigelt, Patrick A1 - Winter, Marten A1 - Klonner, Guenther A1 - Talluto, Matthew V. A1 - Dehnen-Schmutz, Katharina T1 - The changing role of ornamental horticulture in alien plant invasions JF - Biological reviews N2 - The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions. KW - botanical gardens KW - climate change KW - horticulture KW - naturalised plants KW - ornamental plants KW - pathways KW - plant invasions KW - plant nurseries KW - trade KW - weeds Y1 - 2018 U6 - https://doi.org/10.1111/brv.12402 SN - 1464-7931 SN - 1469-185X VL - 93 IS - 3 SP - 1421 EP - 1437 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hickmann, Thomas A1 - Stehle, Fee T1 - The Embeddedness of Urban Climate Politics in Multilevel Governance BT - a Case Study of South Africa’s Major Cities JF - The journal of environment & development : a review of international policy N2 - Numerous scholars have lately highlighted the importance of cities in the global response to climate change. However, we still have little systematic knowledge on the evolution of urban climate politics in the Global South. In particular, we lack empirical studies that examine how local climate actions arise in political-administrative systems of developing and emerging economies. Therefore, this article adopts a multilevel governance perspective to explore the climate mitigation responses of three major cities in South Africa by looking at their vertical and horizontal integration in the wider governance framework. In the absence of a coherent national climate policy, Johannesburg, Cape Town, and Durban have developed distinct climate actions within their jurisdictions. In their effort to address climate change, transnational city networks have provided considerable technical support to these cities. Yet, substantial domestic political-economic obstacles hinder the three cities to develop a more ambitious stance on climate change. KW - climate change KW - developing and emerging economies KW - local climate policy making KW - multilevel governance KW - South Africa KW - transnational city networks Y1 - 2018 U6 - https://doi.org/10.1177/1070496518819121 SN - 1070-4965 SN - 1552-5465 VL - 28 IS - 1 SP - 54 EP - 77 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Stiegler, Jonas A1 - Pahl, Janice A1 - Guillen, Rafael Arce A1 - Ullmann, Wiebke A1 - Blaum, Niels T1 - The heat is on BT - impacts of rising temperature on the activity of a common European mammal JF - Frontiers in Ecology and Evolution N2 - Climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe. Wildlife can respond to new climatic conditions, but the pace of human-induced change limits opportunities for adaptation or migration. Thus, how these changes affect behavior, movement patterns, and activity levels remains unclear. In this study, we investigate how extreme weather conditions affect the activity of European hares (Lepus europaeus) during their peak reproduction period. When hares must additionally invest energy in mating, prevailing against competitors, or lactating, we investigated their sensitivities to rising temperatures, wind speed, and humidity. To quantify their activity, we used the overall dynamic body acceleration (ODBA) calculated from tri-axial acceleration measurements of 33 GPS-collared hares. Our analysis revealed that temperature, humidity, and wind speed are important in explaining changes in activity, with a strong response for high temperatures above 25 & DEG;C and the highest change in activity during temperature extremes of over 35 & DEG;C during their inactive period. Further, we found a non-linear relationship between temperature and activity and an interaction of activity changes between day and night. Activity increased at higher temperatures during the inactive period (day) and decreased during the active period (night). This decrease was strongest during hot tropical nights. At a stage of life when mammals such as hares must substantially invest in reproduction, the sensitivity of females to extreme temperatures was particularly pronounced. Similarly, both sexes increased their activity at high humidity levels during the day and low wind speeds, irrespective of the time of day, while the effect of humidity was stronger for males. Our findings highlight the importance of understanding the complex relationships between extreme weather conditions and mammal behavior, critical for conservation and management. With ongoing climate change, extreme weather events such as heat waves and heavy rainfall are predicted to occur more often and last longer. These events will directly impact the fitness of hares and other wildlife species and hence the population dynamics of already declining populations across Europe. KW - activity KW - ODBA KW - animal tracking KW - European hare KW - extreme weather events KW - climate change Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1193861 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER -