TY - THES A1 - Farkas, Marton Pal T1 - Hydraulic fracturing in hard rock – numerical studies from laboratory to reservoir scale T1 - Hydraulische Brüche in Hartgestein - Numerische Studien vom Labor- bis zum Reservoirmaßstab N2 - Hydraulic-driven fractures play a key role in subsurface energy technologies across several scales. By injecting fluid at high hydraulic pressure into rock with intrinsic low permeability, in-situ stress field and fracture development pattern can be characterised as well as rock permeability can be enhanced. Hydraulic fracturing is a commercial standard procedure for enhanced oil and gas production of rock reservoirs with low permeability in petroleum industry. However, in EGS utilization, a major geological concern is the unsolicited generation of earthquakes due to fault reactivation, referred to as induced seismicity, with a magnitude large enough to be felt on the surface or to damage facilities and buildings. Furthermore, reliable interpretation of hydraulic fracturing tests for stress measurement is a great challenge for the energy technologies. Therefore, in this cumulative doctoral thesis the following research questions are investigated. (1): How do hydraulic fractures grow in hard rock at various scales?; (2): Which parameters control hydraulic fracturing and hydro-mechanical coupling?; and (3): How can hydraulic fracturing in hard rock be modelled? In the laboratory scale study, several laboratory hydraulic fracturing experiments are investigated numerically using Irazu2D that were performed on intact cubic Pocheon granite samples from South Korea applying different injection protocols. The goal of the laboratory experiments is to test the concept of cyclic soft stimulation which may enable sustainable permeability enhancement (Publication 1). In the borehole scale study, hydraulic fracturing tests are reported that were performed in boreholes located in central Hungary to determine the in-situ stress for a geological site investigation. At depth of about 540 m, the recorded pressure versus time curves in mica schist with low dip angle foliation show atypical evolution. In order to provide explanation for this observation, a series of discrete element computations using Particle Flow Code 2D are performed (Publication 2). In the reservoir scale study, the hydro-mechanical behaviour of fractured crystalline rock due to one of the five hydraulic stimulations at the Pohang Enhanced Geothermal site in South Korea is studied. Fluid pressure perturbation at faults of several hundred-meter lengths during hydraulic stimulation is simulated using FracMan (Publication 3). The doctoral research shows that the resulting hydraulic fracturing geometry will depend “locally”, i.e. at the length scale of representative elementary volume (REV) and below that (sub-REV), on the geometry and strength of natural fractures, and “globally”, i.e. at super-REV domain volume, on far-field stresses. Regarding hydro-mechanical coupling, it is suggested to define separate coupling relationship for intact rock mass and natural fractures. Furthermore, the relative importance of parameters affecting the magnitude of formation breakdown pressure, a parameter characterising hydro-mechanical coupling, is defined. It can be also concluded that there is a clear gap between the capacity of the simulation software and the complexity of the studied problems. Therefore, the computational time of the simulation of complex hydraulic fracture geometries must be reduced while maintaining high fidelity simulation results. This can be achieved either by extending the computational resources via parallelization techniques or using time scaling techniques. The ongoing development of used numerical models focuses on tackling these methodological challenges. N2 - Hydraulische Risserzeugung (aus dem Englischen „Hydraulic Fracturing“; auch hydraulische Stimulation genannt) spielt eine Schlüsselrolle in unterirdischen Energietechnologien auf verschiedenen Skalen. Durch Injektion von Flüssigkeit mit hohem hydraulischem Druck im Gestein mit geringer Permeabilität können das Spannungsfeld und das Bruchentwicklungsmuster in-situ charakterisiert sowie die Gesteinspermeabilität erhöht werden. Hydraulic Fracturing ist ein kommerzielles Standardverfahren zur verbesserten Öl- und Gasförderung aus geringpermeablen Gesteinsformationen in der Erdölindustrie. Ein großes geologisches Problem bei der geothermischen Nutzung ist die ungewollte Erzeugung von Erdbeben aufgrund einer Verwerfungsreaktivierung, die als induzierte Seismizität bezeichnet wird und eine Größenordnung hat, die groß genug ist, dass sie an der Oberfläche zu spüren ist und sogar Gebäude beschädigen kann. Darüber hinaus ist die zuverlässige Interpretation von Hydraulic-Fracturing-Tests zur Spannungsmessung eine große Herausforderung für die Energietechnologien. Daher werden in dieser kumulativen Dissertation folgende Forschungsfragen untersucht: (1): Wie wachsen hydraulische Risse in Hartgestein in verschiedenen Skalen? (2): Welche Parameter steuern das hydraulische Versagen und die hydromechanische Kopplung? und (3): Wie kann hydraulische Risserzeugung in Hartgestein modelliert werden? In der Studie im Labormaßstab werden mehrere Hydrofracturing-Laborexperimente numerisch mit Irazu2D untersucht, die an intakten kubischen Pocheon-Granitproben aus Südkorea unter Anwendung verschiedener Injektionsprotokolle durchgeführt wurden. Das Ziel der Laborexperimente ist es, das Konzept der zyklischen sanften Stimulation zu testen, die eine nachhaltige Permeabilitätserhöhung ermöglichen kann (Veröffentlichung 1). Die Studie im Bohrlochmaßstab untersucht Hydraulic Fracturing Tests, die in Bohrlöchern in Mittel-Ungarn durchgeführt wurden, um das in-situ Spannungsfeld für eine geologische Standortuntersuchung zu bestimmen. In einer Tiefe von etwa 540 m zeigen die aufgezeichneten Druck-Zeit-Kurven im Glimmerschiefer mit einer Schieferung mit geringem Neigungswinkel eine atypische Entwicklung. Um diese Beobachtung zu erklären, wird eine Reihe von diskreten Elementberechnungen unter Verwendung von Particle Flow Code 2D durchgeführt (Veröffentlichung 2). In der Studie im Reservoirmaßstab wird das hydromechanische Verhalten des aufgebrochenen kristallinen Gesteins an einer der fünf hydraulischen Stimulationen am Pohang Enhanced Geothermal System (EGS) Standort in Südkorea untersucht. Mit FracMan wird die Fluiddruckstörung an Verwerfungen von mehreren hundert Metern Länge während der hydraulischen Stimulation simuliert (Veröffentlichung 3). Die Ergebnisse dieser Dissertation zeigen, dass die resultierende hydraulische Bruchgeometrie „lokal“, d. h. auf der Längenskala des repräsentativen Elementarvolumens (REV) und darunter (sub-REV) von der Geometrie und Stärke natürlicher Risse und „global“, d.h. bei Super-REV-Domänenvolumen, vom Spannungsfeld abhängt. In Bezug auf die hydromechanische Kopplung wird vorgeschlagen, separate Kopplungsbeziehungen für intakte Gesteinsmassen und natürliche Risse zu definieren. Darüber hinaus wird die relative Bedeutung von Parametern definiert, die die Größe des Formationsbruchdrucks beeinflussen, ein Parameter, der die hydromechanische Kopplung charakterisiert. Es kann auch festgestellt werden, dass es eine klare Lücke zwischen der Leistungsfähigkeit der Simulationssoftware und der Komplexität der untersuchten Probleme gibt. Daher muss die Rechenzeit der Simulation komplexer hydraulischer Rissgeometrien reduziert werden, währenddessen die Simulationsergebnisse mit hoher Genauigkeit beibehalten werden. Dies kann entweder durch Erweiterung der Rechenressourcen über Parallelisierungstechniken oder durch Verwendung von Zeitskalierungstechniken erreicht werden. Die Weiterentwicklung der verwendeten numerischen Modelle konzentriert sich auf die Bewältigung dieser methodischen Herausforderungen. KW - hydraulic fracturing KW - enhanced geothermal system KW - stress measurement KW - numerical modelling KW - hydraulische Risserzeugung KW - petrothermales System (EGS) KW - Spannungsmessung KW - numerische Modellierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549343 ER - TY - THES A1 - Niemz, Peter T1 - Imaging and modeling of hydraulic fractures in crystalline rock via induced seismic activity T1 - Charakterisierung und Modellierung hydraulischer Brüche in Kristallingestein mit Hilfe induzierter Seismizität N2 - Enhanced geothermal systems (EGS) are considered a cornerstone of future sustainable energy production. In such systems, high-pressure fluid injections break the rock to provide pathways for water to circulate in and heat up. This approach inherently induces small seismic events that, in rare cases, are felt or can even cause damage. Controlling and reducing the seismic impact of EGS is crucial for a broader public acceptance. To evaluate the applicability of hydraulic fracturing (HF) in EGS and to improve the understanding of fracturing processes and the hydromechanical relation to induced seismicity, six in-situ, meter-scale HF experiments with different injection schemes were performed under controlled conditions in crystalline rock in a depth of 410 m at the Äspö Hard Rock Laboratory (Sweden). I developed a semi-automated, full-waveform-based detection, classification, and location workflow to extract and characterize the acoustic emission (AE) activity from the continuous recordings of 11 piezoelectric AE sensors. Based on the resulting catalog of 20,000 AEs, with rupture sizes of cm to dm, I mapped and characterized the fracture growth in great detail. The injection using a novel cyclic injection scheme (HF3) had a lower seismic impact than the conventional injections. HF3 induced fewer AEs with a reduced maximum magnitude and significantly larger b-values, implying a decreased number of large events relative to the number of small ones. Furthermore, HF3 showed an increased fracture complexity with multiple fractures or a fracture network. In contrast, the conventional injections developed single, planar fracture zones (Publication 1). An independent, complementary approach based on a comparison of modeled and observed tilt exploits transient long-period signals recorded at the horizontal components of two broad-band seismometers a few tens of meters apart from the injections. It validated the efficient creation of hydraulic fractures and verified the AE-based fracture geometries. The innovative joint analysis of AEs and tilt signals revealed different phases of the fracturing process, including the (re-)opening, growth, and aftergrowth of fractures, and provided evidence for the reactivation of a preexisting fault in one of the experiments (Publication 2). A newly developed network-based waveform-similarity analysis applied to the massive AE activity supports the latter finding. To validate whether the reduction of the seismic impact as observed for the cyclic injection schemes during the Äspö mine-scale experiments is transferable to other scales, I additionally calculated energy budgets for injection experiments from previously conducted laboratory tests and from a field application. Across all three scales, the cyclic injections reduce the seismic impact, as depicted by smaller maximum magnitudes, larger b-values, and decreased injection efficiencies (Publication 3). N2 - Hydraulisch-stimulierte tiefengeothermale Systeme (Enhanced Geothermal systems, EGS) gelten als einer der Eckpfeiler für die nachhaltige Energieerzeugung der Zukunft. In diesen geothermalen Systemen wird heißes Tiefengestein durch Fluidinjektionen unter hohem Druck aufgebrochen, um Wegsamkeiten zur Erwärmung von Wasser oder anderen Fluiden zu schaffen. Beim Aufbrechen werden zwangsläufig kleine seismische Ereignisse ausgelöst (induzierte Seismizität), die in sehr seltenen Fällen an der Oberfläche spürbar sind, jedoch in extremen Fällen auch Schäden verursachen können. Die Kontrolle bzw. die Reduzierung der seismischen Aktivität in EGS ist daher ein entscheidender Punkt, damit diese Art der Energiegewinnung eine breite gesellschaftliche Akzeptanz findet. Grundlage dieser Dissertation ist eine Serie von kontrollierten, hydraulischen Bruchexperimenten mit Bruchdimensionen von einigen Metern. Die Experimente wurden in einer Tiefe von 410 m in kristallinem Gestein eines Versuchsbergwerks (Äspö Hard Rock Laboratory, Schweden) mit unterschiedlichen Injektionsstrategien durchgeführt. Die detaillierte Auswertung der Bruch-Experimente in dieser Dissertation zielt darauf ab, die Nutzbarkeit von hydraulischen Stimulationen (hydraulic fracturing, HF) in EGS zu untersuchen und das Verständnis von Bruchprozessen sowie der hydromechanischen Beziehung zur induzierten Seismizität zu verbessern. Um die Schallemissionsaktivität (acoustic emissions, AE), die durch 11 piezoelektrische AE-Sensoren kontinuierlich aufgezeichnet wurde, zu extrahieren und zu charakterisieren, wurde ein halbautomatischer, wellenformbasierter Detektions-, Klassifizierungs- und Lokalisierungsworkflow entwickelt. Mit Hilfe des resultierenden Katalogs von 20000 AEs wurde das Bruchwachstum detailliert kartiert und charakterisiert. Das Experiment mit der neuartigen, zyklischen Injektionsstrategie (HF3) weist einen geringeren seismischen Fußabdruck auf als die Standard-Injektionsstrategie. HF3 induzierte weniger AEs und eine kleinere Maximalmagnitude. Außerdem hatte das Experiment einen signifikant höheren b-Wert, was einer verringerten Anzahl von großen AEs relativ zur Anzahl der kleineren AEs entspricht. Darüber hinaus zeigte HF3 eine erhöhte Komplexität im Bruchmuster mit mehreren Brüchen bzw. einem Netzwerk von Brüchen. Im Gegensatz dazu entwickelten die Standard-Injektionen einzelne, ebene Bruchzonen (Publikation 1). Zusätzlich zu den induzierten AEs wurden transiente, langperiodische Signale auf den horizontalen Komponenten von zwei Breitband-Seismometern, die wenige Meter von den Brüchen installiert waren, ausgewertet. Diese Signale wurden als Neigungssignale interpretiert und mit modellierten Neigungssignalen verglichen. Der Vergleich zeigt unabhängig, dass hydraulische Brüche geöffnet wurden und bestätigt, dass die AE-basierte Analyse die Bruchgeometrie verlässlich kartieren kann. Die gemeinsame Betrachtung von AEs und Neigungssignalen offenbart verschiedene Phasen des Bruchprozesses: das (wiederholte) Öffnen des Bruches, das Bruchwachstum und das weitere Wachsen des Bruches nach dem Ende der Injektion. Außerdem liefert die Analyse Hinweise auf die Reaktivierung einer natürlichen Bruchzone in einem der Experimente (Publikation 2). Eine neuentwickelte und hier präsentierte Wellenform-Ähnlichkeitsanalyse, die Informationen des gesamten Sensornetzwerkes nutzt und zum ersten Mal auf einen umfangreichen AE-Katalog angewendet wurde, unterstützt diese Interpretation. Um zu validieren, ob die verringerte Seismizität während der zyklischen Injektion auf der Meter-Skala (Bergwerk) auf andere Maßstäbe übertragbar ist, wurden Energie-Budgets für Injektionsexperimente aus zuvor durchgeführten Laborversuchen und aus einem Tiefengeothermie-Projekt berechnet. Über alle drei Skalen hinweg zeigen die zyklischen Injektionen einen verringerten seismischen Fußabdruck mit kleineren Maximalmagnituden, größeren b-Werte und einem kleineren Verhältnis von seismisch-abgestrahlter zu injizierter Energie (Publikation 3). KW - induced seismicity KW - hydraulic fracturing KW - enhanced geothermal systems (EGS) KW - injection KW - deformation KW - acoustic emissions KW - fracture growth KW - injection scheme KW - basement rock KW - Schallemissionen KW - Grundgestein KW - Deformation KW - verbesserte geothermische Systeme KW - Bruchausbreitung KW - hydraulisches Aufbrechen KW - Induzierte Seismizität KW - Injektion KW - Injektionsschema Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-556593 ER -