TY - JOUR A1 - Wang, Feipeng A1 - Frübing, Peter A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Wegener, Michael T1 - Enhanced Polarization in Melt-quenched and Stretched Poly(vinylidene Fluoride-Hexafluoropropylene) Films N2 - beta-phase poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymer films were prepared by uniaxially stretching solution-cast or melt-quenched samples. Different preparation routes lead to different amounts of the crystalline alpha and beta phases in the films, as detected by means of Fourier-transform infrared spectroscopy and X-ray diffractometry. The beta phase is significantly enhanced in melt-quenched and stretched films in comparison to solution-cast and stretched films. This is particularly true for copolymer samples with higher HFP content. The beta- phase enhancement is also observed in ferroelectric-hysteresis experiments where a rather high polarization of 58 mC/ m(2) was found on melt-quenched and stretched samples after poling at electric fields of 140 MV/m. After poling at 160 MV/m, one of these samples exhibited a piezoelectric d(33) coefficient as high as 21 pC/N. An electric-field-induced partial transition from the alpha to the beta phase was also observed on the melt-quenched and stretched samples. This effect leads to a further increase in the applications-relevant dipole polarization. Uniaxially stretched ferroelectric- polymer films are highly anisotropic. Dielectric resonance spectroscopy reveals a strong increase of the transverse piezoelectric d(32) coefficient and a strong decrease of the transverse elastic modulus c(32) upon heating from 20 to 50 degrees C. Y1 - 2010 UR - http://ieeexplore.ieee.org/servlet/opac?punumber=94 U6 - https://doi.org/10.1109/TDEI.2010.5539679 SN - 1070-9878 ER - TY - JOUR A1 - Chinaglia, Dante Luis A1 - Gregorio, Rinaldo A1 - Stefanello, Josiani Cristina A1 - Altafim, Ruy Alberto Pisani A1 - Wirges, Werner A1 - Wang, Feipeng A1 - Gerhard, Reimund T1 - Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly(vinylidene fluoride) films N2 - The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N- dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt % at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/30035 U6 - https://doi.org/10.1002/App.31488 SN - 0021-8995 ER - TY - JOUR A1 - Greco, Tonino A1 - Wang, Feipeng A1 - Wegener, Michael T1 - Multifunctional silver poly(vinylidene fluoride) nanocomposites : nanoparticle synthesis, film processing, and structural characterization N2 - Scope of this work was the synthesis of homogeneously dispersed silver nanoparticles in the ferroelectric polymer poly(vinylidene fluoride) (PVDF) and the study of the resulting properties affecting both the electro-active matrix and the optically-active nanofiller. In the nanocomposites surface plasmon resonances can be tuned across the UV- vis to the NIR spectral range. From IR spectra and DSC measurements it is concluded that the - to -phase transformation is observed and no degradation of the polymer matrix occurs. Finally, electrical poling was performed in order to investigate the influence of the embedded silver particles on the polarization behavior of the ferroelectric polymer. Y1 - 2010 UR - http://www.informaworld.com/openurl?genre=journal&issn=0015-0193 U6 - https://doi.org/10.1080/00150193.2010.482896 SN - 0015-0193 ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Jelicic, Aleksandra A1 - Wang, Feipeng A1 - Rabu, Pierre A1 - Friedrich, Alwin A1 - Beuermann, Sabine A1 - Taubert, Andreas T1 - Transparent, flexible, and paramagnetic ionogels based on PMMA and the iron-based ionic liquid 1-butyl-3- methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] N2 - The iron-containing ionic liquid (IL) 1-butyl-3-methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] has been used as a building block in the synthesis of transparent, ion-conducting, and paramagnetic ionogels. UV/Vis spectroscopy shows that the coordination around the Fe(III) ion does slightly change upon incorporation of the IL into PMMA. The thermal stability of the PMMA increases significantly with IL incorporation. In particular, the onset weight loss observed at ca. 265 degrees C for pure PMMA is completely suppressed. The ionic conductivity shows a strong temperature dependence and increases with increasing IL weight fractions. The magnetic properties are similar to those reported for the pure IL and are not affected by the incorporation into the PMMA matrix. The resulting ionogel is thus an interesting prototype for soft, flexible, and transparent materials combining the mechanical properties of the matrix with the functionality of the metal-containing IL, such as magnetism. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/jm/index.asp U6 - https://doi.org/10.1039/C0jm01733g SN - 0959-9428 ER -