TY - THES A1 - Ivakov, Alexander T1 - Metabolic interactions in leaf development in Arabidopsis thaliana T1 - Metabolische Interaktionen während der Blattentwicklung in Arabidopsis thaliana N2 - Das Wachstum und Überleben von Pflanzen basiert auf der Photosynthese in den Blättern. Diese beinhaltet die Aufnahme von Kohlenstoffdioxid aus der Atmosphäre und das simultane Einfangen von Lichtenergie zur Bildung organischer Moleküle. Diese werden nach dem Eintritt in den Metabolismus in viele andere Komponenten umgewandelt, welche die Grundlage für die Zunahme der Biomasse bilden. Blätter sind Organe, die auf die Fixierung von Kohlenstoffdioxid spezialisiert sind. Die Funktionen der Blätter beinhalten vor allem die Optimierung und Feinregulierung vieler Prozesse, um eine effektive Nutzung von Ressourcen und eine maximale Photosynthese zu gewährleisten. Es ist bekannt, dass sich die Morphologie der Blätter den Wachstumsbedingungen der Pflanze anpasst und eine wichtige Rolle bei der Optimierung der Photosynthese spielt. Trotzdem ist die Regulation dieser Art der Anpassung bisher nicht verstanden. Die allgemeine Zielsetzung dieser vorliegenden Arbeit ist das Verständnis wie das Wachstum und die Morphologie der Blätter im Modellorganismus Arabidopsis thaliana reguliert werden. Besondere Aufmerksamkeit wurde hierbei der Möglichkeit geschenkt, dass es interne metabolische Signale in der Pflanze geben könnte, die das Wachstum und die Entwicklung von Blättern beeinflussen. Um diese Fragestellung zu untersuchen, muss das Wachstum und die Entwicklung von Blättern oberhalb des Levels des einzelnen Organs und im Kontext der gesamten Pflanze betrachtet werden, weil Blätter nicht eigenständig wachsen, sondern von Ressourcen und regulatorischen Einflüssen der ganzen Pflanze abhängig sind. Aufgrund der Komplexität dieser Fragestellung wurden drei komplementäre Ansätze durchgeführt. Im ersten und spezifischsten Ansatz wurde untersucht ob eine flussabwärts liegende Komponente des Zucker-Signalwegs, Trehalose-6-Phosphat (Tre-6-P), das Blattwachstum und die Blattentwicklung beinflussen kann. Um diese Frage zu beantworten wurden transgene Arabidopsis-Linien mit einem gestörten Gehalt von Tre-6-P durch die Expression von bakteriellen Proteinen die in dem metabolismus von trehalose beteiligt sind. Die Pflanzen-Linien wurden unter Standard-Bendingungen in Erde angebaut und ihr Metabolismus und ihre Blattmorphologie untersucht. Diese Experimente führten auch zu einem unerwarteten Projekt hinsichtlich einer möglichen Rolle von Tre-6-P in der Regulation der Stomata. In einem zweiten, allgemeineren Ansatz wurde untersucht, ob Änderungen im Zucker-Gehalt der Pflanzen die Morphogenese der Blätter als Antwort auf Licht beeinflussen. Dazu wurden eine Reihe von Mutanten, die im Zentralmetabolismus beeinträchtigt sind, in derselben Lichtbedingung angezogen und bezüglich ihrer Blattmorphologie analysiert. In einem dritten noch allgemeineren Ansatz wurde die natürliche Variation von morphologischen Ausprägungen der Blätter und Rosette anhand von wilden Arabidopsis Ökotypen untersucht, um zu verstehen wie sich die Blattmorphologie auf die Blattfunktion und das gesamte Pflanzenwachstum auswirkt und wie unterschiedliche Eigenschaften miteinander verknüpft sind. Das Verhältnis der Blattanzahl zum Gesamtwachstum der Pflanze und Blattgröße wurde gesondert weiter untersucht durch eine Normalisierung der Blattanzahl auf das Frischgewicht der Rosette, um den Parameter „leafing Intensity“ abzuschätzen. Leafing Intensity integrierte Blattanzahl, Blattgröße und gesamtes Rosettenwachstum in einer Reihe von Kompromiss-Interaktionen, die in einem Wachstumsvorteil resultieren, wenn Pflanzen weniger, aber größere Blätter pro Einheit Biomasse ausbilden. Dies führte zu einem theoretischen Ansatz in dem ein einfaches allometrisch mathematisches Modell konstruiert wurde, um Blattanzahl, Blattgröße und Pflanzenwachstum im Kontext der gesamten Pflanze Arabidopsis zu verknüpfen. N2 - Plant growth and survival depend on photosynthesis in the leaves. This involves the uptake of carbon dioxide from the atmosphere and the simultaneous capture of light energy to produce organic molecules, which enter metabolism and are converted to many other compounds which then serve as building blocks for biomass growth. Leaves are organs specialised for photosynthetic carbon dioxide fixation. The function of leaves involves many trade-offs which must be optimised in order to achieve effective use of resources and maximum photosynthesis. It is known that the morphology of leaves adjusts to the growth environment of plants and this is important for optimising their function for photosynthesis. However, it is unclear how this adjustment is regulated. The general aim of the work presented in this thesis is to understand how leaf growth and morphology are regulated in the model species Arabidopsis thaliana. Special attention was dedicated to the possibility that there might be internal metabolic signals within the plant which affect the growth and development of leaves. In order to investigate this question, leaf growth and development must be considered beyond the level of the single organ and in the context of the whole plant because leaves do not grow autonomously but depend on resources and regulatory influences delivered by the rest of the plant. Due to the complexity of this question, three complementary approaches were taken. In the first and most specific approach it was asked whether a proposed down-stream component of sucrose signalling, trehalose-6-phosphate (Tre-6-P), might influence leaf development and growth. To investigate this question, transgenic Arabidopsis lines with perturbed levels of Tre-6-P were generated using the constitutive 35S promoter to express bacterial enzymes involved in trehalose metabolism. These experiments also led to an unanticipated project concerning a possible role for Tre-6-P in stomatal function, which is another very important function in leaves. In a second and more general approach it was investigated whether changes in sugar levels in plants affect the morphogenesis of leaves in response to light. For this, a series of metabolic mutants impaired in central metabolism were grown in one light environment and their leaf morphology was analysed. In a third and even more general approach the natural variation in leaf and rosette morphological traits was investigated in a panel of wild Arabidopsis accessions with the aim of understanding how leaf morphology affects leaf function and whole plant growth and how different traits relate to each other. The analysis included measurements of leaf morphological traits as well as the number of leaves in the plant to put leaf morphology in a whole plant context. The variance in plant growth could not be explained by variation in photosynthetic rates and only to a small degree by variation in rates of dark respiration. There were four key axes of variation in rosette and leaf morphology – leaf area growth, leaf thickness, cell expansion and leaf number. These four processes were integrated in the context of whole plant growth by models that employed a multiple linear regression approach. This then led to a theoretical approach in which a simple allometric mathematical model was constructed, linking leaf number, leaf size and plant growth rate together in a whole plant context in Arabidopsis. KW - Blattmorphologie KW - Entwicklung KW - Arabidopsis KW - Metabolismus KW - Ökotypen KW - leaf KW - morphology KW - Arabidopsis KW - metabolism KW - accessions Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59730 ER - TY - THES A1 - Gómez-Porras, Judith Lucia T1 - In silico identification of genes regulated by abscisic acid in Arabidopsis thaliana (L.) Heynh. T1 - In silico Identifikation von Abszisinsaeure-regulierten Genen in Arabidopsis thaliana (L.) Heynh. N2 - Abscisic acid (ABA) is a major plant hormone that plays an important role during plant growth and development. During vegetative growth ABA mediates (in part) responses to various environmental stresses such as cold, drought and high salinity. The response triggered by ABA includes changes in the transcript level of genes involved in stress tolerance. The aim of this project was the In silico identification of genes putatively regulated by ABA in A. thaliana. In silico predictions were combined with experimental data in order to evaluate the reliability of computational predictions. Taking advantage of the genome sequence of A. thaliana publicly available since 2000, 1 kb upstream sequences were screened for combinations of cis-elements known to be involved in the regulation of ABA-responsive genes. It was found that around 10 to 20 percent of the genes of A. thaliana might be regulated by ABA. Further analyses of the predictions revealed that certain combinations of cis-elements that confer ABA-responsiveness were significantly over-represented compared with results in random sequences and with random expectations. In addition, it was observed that other combinations that confer ABA-responsiveness in monocotyledonous species might not be functional in A. thaliana. It is proposed that ABA-responsive genes in A. thaliana show pairs of ABRE (abscisic acid responsive element) with MYB binding sites, DRE (dehydration responsive element) or with itself. The analysis of the distances between pairs of cis-elements suggested that pairs of ABREs are bound by homodimers of ABRE binding proteins. In contrast, pairs between MYB binding sites and ABRE, or DRE and ABRE showed a distance between cis-elements that suggested that the binding proteins interact through protein complexes and not directly. The comparison of computational predictions with experimental data confirmed that the regulatory mechanisms leading to the induction or repression of genes by ABA is very incompletely understood. It became evident that besides the cis-elements proposed in this study to be present in ABA-responsive genes, other known and unknown cis-elements might play an important role in the transcriptional regulation of ABA-responsive genes. For example, auxin-related cis elements, or the cis-elements recognized by the NAM-family of transcription factors (Non-Apical meristem). This work documents the use of computational and experimental approaches to analyse possible interactions between cis-elements involved in the regulation of ABA-responsive genes. The computational predictions allowed the distinction between putatively relevant combinations of cis-elements from irrelevant combinations of cis-elements in ABA-responsive genes. The comparison with experimental data allowed to identify certain cis-elements that have not been previously associated to the ABA-mediated transcriptional regulation, but that might be present in ABA-responsive genes (e.g. auxin responsive elements). Moreover, the efforts to unravel the gene regulatory network associated with the ABA-signalling pathway revealed that NAM-transcription factors and their corresponding binding sequences are important components of this network. N2 - Pflanzen reagieren auf aeußere Stresseinwirkung (z.B. Trockenheit oder Hitze) u.a. mit der Bildung bestimmter Hormone. Diese Hormone wiederum bewirken eine Vielzahl komplexer Reaktionen (z.B. im Stoffwechsel und in der Genexpression), die zum Ziel haben, die Pflanzen widerstandsfaehiger gegen die Stresssituation zu machen. Ein wichtiges Stresshormon ist die Abzisinsaeure (ABA, fuer engl. „abscisic acid“). Experimentell koennen Pflanzen durch die Gabe von ABA zu Reaktionen gezwungen werden, die normalerweise nur unter Stressbedingungen beobachtet werden. Hierzu zaehlen vor allem eine Reduktion der Spaltoeffnungen in den Blaettern, um den Wasserverlust infolge von Transpiration zu minimieren, und eine massive Umprogrammierung der Genexpression. In der vorliegenden Arbeit wurde der Einfluss von ABA auf die Genexpression in der Modellpflanze Arabidopsis thaliana untersucht. Hierzu wurden bioinformatorische und experimentelle Ansaetze verknuepft. Die bioinformatorischen Ansaetze bedienten sich der bekannten Sequenz des Genoms von A. thaliana. Mit Hilfe verschiedener geeigneter Computerprogramme wurden im Genom Gene identifiziert, deren Expression potentiell durch ABA reguliert wird. Die so erhaltenen Vorhersagen der verschiedenen Programme wurden miteinander und mit eigenen als auch mit publizierten experimentellen Daten verglichen, um die Qualitaet der Vorhersagen zu beurteilen. Die wichtigste Schlussfolgerung aus den Ergebnissen dieser Arbeit ist, dass gegenwaertig bioinformatorische Ansaetze allein nicht ausreichen, um biologische Prozesse zufriedenstellend zu analysieren. In der vorliegenden Arbeit ermoeglichte erst eine Kombination aus bioinformatorischen und experimentellen Ansaetzen die Generierung neuer, abgesicherter Hypothesen zur ABA-induzierten Umprogrammierung der Genexpression. KW - Bioinformatik KW - Abszisinsäure KW - Promotoren KW - bioinformatics KW - regulation KW - ABA KW - Arabidopsis Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7401 ER - TY - JOUR A1 - Frescatada-Rosa, Marcia A1 - Stanislas, Thomas A1 - Backues, Steven K. A1 - Reichardt, Ilka A1 - Men, Shuzhen A1 - Boutte, Yohann A1 - Juergens, Gerd A1 - Moritz, Thomas A1 - Bednarek, Sebastian York A1 - Grebe, Markus T1 - High lipid order of Arabidopsis cell-plate membranes mediated by sterol and Dynamin-Related Protein 1A function JF - The plant journal N2 - Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis. KW - membrane order KW - sterol KW - cytokinesis KW - DRP1A KW - Arabidopsis Y1 - 2014 U6 - https://doi.org/10.1111/tpj.12674 SN - 0960-7412 SN - 1365-313X VL - 80 IS - 5 SP - 745 EP - 757 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Eldridge, Tilly A1 - Langowski, Lukasz A1 - Stacey, Nicola A1 - Jantzen, Friederike A1 - Moubayidin, Laila A1 - Sicard, Adrien A1 - Southam, Paul A1 - Kennaway, Richard A1 - Lenhard, Michael A1 - Coen, Enrico S. A1 - Ostergaard, Lars T1 - Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy JF - Development : Company of Biologists N2 - Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity. KW - Brassicaceae KW - Capsella KW - Arabidopsis KW - Fruit shape KW - Modelling KW - Anisotropic growth Y1 - 2016 U6 - https://doi.org/10.1242/dev.135327 SN - 0950-1991 SN - 1477-9129 VL - 143 SP - 3394 EP - 3406 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Ebrahimian-Motlagh, Saghar A1 - Ribone, Pamela A. A1 - Thirumalaikumar, Venkatesh P. A1 - Allu, Annapurna Devi A1 - Chan, Raquel L. A1 - Mueller-Roeber, Bernd A1 - Balazadeh, Salma T1 - JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13 JF - Frontiers in plant science N2 - Low water availability is the major environmental factor limiting growth and productivity of plants and crops and is therefore considered of high importance for agriculture affected by climate change. Identifying regulatory components controlling the response and tolerance to drought stress is thus of major importance. The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) from Arabidopsis thaliana extends leaf longevity under non-stress growth conditions, lowers cellular hydrogen peroxide (H2O2) level, and enhances tolerance against heat stress and salinity. Here, we additionally find that JUB1 strongly increases tolerance to drought stress in Arabidopsis when expressed from both, a constitutive (CaMV 35S) and an abiotic stress-induced (RD29A) promoter. Employing a yeast one-hybrid screen we identified HD-Zip class I TF AtHB13 as an upstream regulator of JUB1. AtHB13 has previously been reported to act as a positive regulator of drought tolerance. AtHB13 and JUB1 thereby establish a joint drought stress control module. KW - Arabidopsis KW - transcription factor KW - drought KW - JUB1 KW - HB13 Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.02118 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Duncan, Susan A1 - Rosa, Stefanie Nunes T1 - Gaining insight into plant gene transcription using smFISH JF - Transcription N2 - Single molecule RNA fluorescent in situ hybridization (smFISH) enables gene transcription to be assessed at the cellular level. In this point of view article, we describe our recent smFISH research in the model plant Arabidopsis thaliana and discuss how this technique could further knowledge of plant gene transcription in the future. KW - Arabidopsis KW - lncRNA KW - mRNA Quantification KW - RNA Imaging KW - smFISH Y1 - 2017 U6 - https://doi.org/10.1080/21541264.2017.1372043 SN - 2154-1264 SN - 2154-1272 VL - 9 IS - 3 SP - 166 EP - 170 PB - Taylor & Francis Group CY - Philadelphia ER - TY - THES A1 - Dreyer, Ingo T1 - Biophysikalische und molekulare Grundlagen der Regulation des Kaliumtransports in Pflanzen T1 - Biophysical and molecular bases of the regulation of potassium transport in plants N2 - Kaliumionen (K+) sind die am häufigsten vorkommenden anorganischen Kationen in Pflanzen. Gemessen am Trockengewicht kann ihr Anteil bis zu 10% ausmachen. Kaliumionen übernehmen wichtige Funktionen in verschiedenen Prozessen in der Pflanze. So sind sie z.B. essentiell für das Wachstum und für den Stoffwechsel. Viele wichtige Enzyme arbeiten optimal bei einer K+ Konzentration im Bereich von 100 mM. Aus diesem Grund halten Pflanzenzellen in ihren Kompartimenten, die am Stoffwechsel beteiligt sind, eine kontrollierte Kaliumkonzentration von etwa 100 mM aufrecht. Die Aufnahme von Kaliumionen aus dem Erdreich und deren Transport innerhalb der Pflanze und innerhalb einer Pflanzenzelle wird durch verschiedene Kaliumtransportproteine ermöglicht. Die Aufrechterhaltung einer stabilen K+ Konzentration ist jedoch nur möglich, wenn die Aktivität dieser Transportproteine einer strikten Kontrolle unterliegt. Die Prozesse, die die Transportproteine regulieren, sind bis heute nur ansatzweise verstanden. Detailliertere Kenntnisse auf diesem Gebiet sind aber von zentraler Bedeutung für das Verständnis der Integration der Transportproteine in das komplexe System des pflanzlichen Organismus. In dieser Habilitationsschrift werden eigene Publikationen zusammenfassend dargestellt, in denen die Untersuchungen verschiedener Regulationsmechanismen pflanzlicher Kaliumkanäle beschrieben werden. Diese Untersuchungen umfassen ein Spektrum aus verschiedenen proteinbiochemischen, biophysikalischen und pflanzenphysiologischen Analysen. Um die Regulationsmechanismen grundlegend zu verstehen, werden zum einen ihre strukturellen und molekularen Besonderheiten untersucht. Zum anderen werden die biophysikalischen und reaktionskinetischen Zusammenhänge der Regulationsmechanismen analysiert. Die gewonnenen Erkenntnisse erlauben eine neue, detailliertere Interpretation der physiologischen Rolle der Kaliumtransportproteine in der Pflanze. N2 - Potassium ions (K+) are the most abundant anorganic cations in plants. They can constitute up to 10% of the plant dry weight. Potassium ions play important roles in different processes in the plant. For example, they are essential for growth and for metabolism. Many important enzymes work optimally at a K+ concentration within the range of about 100 mM. Therefore, plant cells maintain a controlled potassium concentration of approximately 100 mM in their compartments, which are involved in metabolism. The uptake of potassium ions from the soil and their transport within the plant and within a plant cell is accomplished by different potassium transporter proteins. However, the maintenance of a stable K+ concentration is only possible if the activity of these transporter proteins is subject to strict control. Up today the processes regulating the transporter proteins are only rudimentarily understood. More detailed knowledge in this area is, however, of central importance for the understanding of the integration of the transporter proteins into the complex system of the plant organism. This Habilitation-thesis summarizes own publications, in which the investigations of different regulation mechanisms of plant potassium channels are described. These investigations cover a spectrum of different protein-biochemical, biophysical and plant-physiological analyses. In order to understand the regulation mechanisms, on the one hand their structural and molecular characteristics are examined. On the other hand the biophysical and reaction-kinetic properties of the regulation mechanisms are analyzed. The obtained insights allow a new, more detailed view on the physiological role of potassium transporter proteins in the plant. KW - Kaliumion KW - Ionenkanal KW - Elektrophysiologie KW - Biophysik KW - Schmalwand KW - potassium ions KW - ion channel KW - electrophysiology KW - biophysics KW - Arabidopsis Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7708 ER - TY - JOUR A1 - Dong, Yanni A1 - Gupta, Saurabh A1 - Sievers, Rixta A1 - Wargent, Jason J. A1 - Wheeler, David A1 - Putterill, Joanna A1 - Macknight, Richard A1 - Gechev, Tsanko S. A1 - Müller-Röber, Bernd A1 - Dijkwel, Paul P. T1 - Genome draft of the Arabidopsis relative Pachycladon cheesemanii reveals environment JF - BMC genomics N2 - BackgroundPachycladon cheesemanii is a close relative of Arabidopsis thaliana and is an allotetraploid perennial herb which is widespread in the South Island of New Zealand. It grows at altitudes of up to 1000m where it is subject to relatively high levels of ultraviolet (UV)-B radiation. To gain first insights into how Pachycladon copes with UV-B stress, we sequenced its genome and compared the UV-B tolerance of two Pachycladon accessions with those of two A. thaliana accessions from different altitudes.ResultsA high-quality draft genome of P. cheesemanii was assembled with a high percentage of conserved single-copy plant orthologs. Synteny analysis with genomes from other species of the Brassicaceae family found a close phylogenetic relationship of P. cheesemanii with Boechera stricta from Brassicaceae lineage I. While UV-B radiation caused a greater growth reduction in the A. thaliana accessions than in the P. cheesemanii accessions, growth was not reduced in one P. cheesemanii accession. The homologues of A. thaliana UV-B radiation response genes were duplicated in P. cheesemanii, and an expression analysis of those genes indicated that the tolerance mechanism in P. cheesemanii appears to differ from that in A. thaliana.ConclusionAlthough the P. cheesemanii genome shows close similarity with that of A. thaliana, it appears to have evolved novel strategies allowing the plant to tolerate relatively high UV-B radiation. KW - Abiotic stress KW - Arabidopsis KW - Genome assembly KW - Pachycladon KW - UV-B tolerance Y1 - 2019 U6 - https://doi.org/10.1186/s12864-019-6084-4 SN - 1471-2164 VL - 20 IS - 1 PB - BMC CY - London ER - TY - THES A1 - Dolniak, Blazej T1 - Functional characterisation of NIC2, a member of the MATE family from Arabidopsis thaliana (L.) Heynh. T1 - Funktionale Charakterisierung von NIC2, einem Mitglied der MATE Familie aus Arabidopsis thaliana (L.) Heynh. N2 - The multidrug and toxic compounds extrusion (MATE) family includes hundreds of functionally uncharacterised proteins from bacteria and all eukaryotic kingdoms except the animal kingdom, that function as drug/toxin::Na+ or H+ antiporters. In Arabidopsis thaliana the MATE family comprises 56 members, one of which is NIC2 (Novel Ion Carrier 2). Using heterologous expression systems including Escherichia coli and Saccharomyces cerevisiae, and the homologous expression system of Arabidopsis thaliana, the functional characterisation of NIC2 was performed. It has been demonstrated that NIC2 confers resistance of E. coli towards the chemically diverse compounds such as tetraethylammonium chloride (TEACl), tetramethylammonium chloride (TMACl) and a toxic analogue of indole-3-acetic acid, 5-fluoro-indole-acetic acid (F-IAA). Therefore, NIC2 may be able to transport a broad range of drug and toxic compounds. In wild-type yeast the expression of NIC2 increased the tolerance towards lithium and sodium, but not towards potassium and calcium. In A. thaliana, the overexpression of NIC2 led to strong phenotypic changes. Under normal growth condtions overexpression caused an extremely bushy phenotype with no apical dominance but an enhanced number of lateral flowering shoots. The amount of rossette leaves and flowers with accompanying siliques were also much higher than in wild-type plants and the senescence occurred earlier in the transgenic plants. In contrast, RNA interference (RNAi) used to silence NIC2 expression, induced early flower stalk development and flowering compared with wild-type plants. In additon, the main flower stalks were not able to grow vertically, but instead had a strong tendency to bend towards the ground. While NIC2 RNAi seedlings produced many lateral roots outgrowing from the primary root and the root-shoot junction, NIC2 overexpression seedlings displayed longer primary roots that were characterised by a 2 to 4 h delay in the gravitropic response. In addition, these lines exhibited an enhanced resistance to exogenously applied auxins, i.e. indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) when compared with the wild-type roots. Based on these results, it is suggested that the NIC2 overexpression and NIC2 RNAi phenotypes were due to decreased or increased levels of auxin, respectively. The ProNIC2:GUS fusion gene revealed that NIC2 is expressed in the stele of the elongation zone, in the lateral root cap, in new lateral root primordia, and in pericycle cells of the root system. In the vascular tissue of rosette leaves and inflorescence stems, the expression was observed in the xylem parenchyma cells, while in siliques it was also in vascular tissue, but as well in the dehiscence and abscission zones. The organ- and tissue-specific expression sites of NIC2 correlate with the sites of auxin action in mature Arabidopsis plants. Further experiments using ProNIC2:GUS indicated that NIC2 is an auxin-inducible gene. Additionally, during the gravitropic response when an endogenous auxin gradient across the root tip forms, the GUS activity pattern of the ProNIC2:GUS fusion gene markedly changed at the upper side of the root tip, while at the lower side stayed unchanged. Finally, at the subcellular level NIC2-GFP fusion protein localised in the peroxisomes of Nicotana tabacum BY2 protoplasts. Considering the experimental results, it is proposed that the hypothetical function of NIC2 is the efflux transport which takes part in the auxin homeostasis in plant tissues probably by removing auxin conjugates from the cytoplasm into peroxisomes. N2 - "Multidrug and Toxic Compounds Extrusion" (MATE) – Proteine sind Membranproteine, die eine Vielzahl komplexer und giftiger Substanzen transportieren können. Sie sind weit verbreitet und kommen in Bakterien und Höheren Organismen mit Ausnahme des Tierreichs vor. Insgesamt gibt es hunderte von bisher kaum untersuchten Genen dieser Familie, die eine hohe Sequenzhomologie aufweisen. In der Pflanze Arabidopsis thaliana wurden 56 Gene der MATE - Familie zugeordnet. Eines von ihnen, der "Novel Ion Carrier 2" (NIC2) wurde näher charakterisiert. Dafür wurden heterologe Expressionssysteme wie Bakterien (Escherichia coli) und Hefe (Saccharomyces cerevisiae) genutzt und transgene Pflanzen (Arabidopsis thaliana) hergestellt. Es wurde gezeigt, dass NIC2 Bakterien eine Resistenz gegenüber mehreren giftigen Stoffen verlieh. In Hefe erhöhte NIC2 die Salztoleranz gegenüber Lithium und Natrium, aber nicht gegenüber Kalium und Kalzium. Das deutet darauf hin, dass NIC2 diese Stoffe transportieren kann und so zur Entgiftung beziehungsweise erhöhter Stresstoleranz beiträgt. In Pflanzen führte die Überexpression von NIC2 zu dramatischen Änderungen im Wachstum. Die Pflanzen waren buschig ohne zentralen Blütenstand, hatten jedoch eine höhere Anzahl von Blättern und Blüten und längere Wurzeln mit einer im Vergleich zu den Wildtyppflanzen verzögerten gravitropen Antwort. In Gegensatz dazu entwickelten Pflanzen, in denen die Expression von NIC2 gehemmt wurde, früh einen zentralen Blütenstand, der allerdings nicht gerade wuchs, sondern die Tendenz hatte, sich zum Boden zu biegen. Das Wurzelsystem bestand aus einer Hauptwurzel und vielen sekundären Wurzeln und war im Vergleich zu den Wildtyppflanzen besser entwickelt. Vermutlich kann die Wuchsform auf einen veränderten Gehalt des Pflanzenhormons Auxin zurückgeführt werden. Die Expression von NIC2 wird durch Auxin induziert. Experimente, in denen die Aktivität eines Gens mit Hilfe eines Reportergens nachgewiesen wird, zeigten, dass NIC2 in Wurzeln, Blättern, Blütenstielen, Blüten und Schoten aktiv ist. Innerhalb der Zelle ist NIC2 in Peroxisomen lokalisiert. Peroxisomen sind kleine Organellen, die eine Rolle im Hormonstoffwechsel spielen können, wie z.B. im Fall von Auxinen. Die Daten sprechen dafür, dass NIC2 eine Funktion beim Auxintransport und somit bei der Auxin-Homöostase hat. KW - Ackerschmalwand KW - Auxine KW - Membranproteine KW - Arabidopsis KW - membrane protein KW - auxin Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5372 ER - TY - THES A1 - Czesnick, Hjördis T1 - Functional specialization of Arabidopsis poly(A) polymerases in relation to flowering time and stress T1 - Funktionelle Spezialisierung von Arabidopsis Poly(A)-Polymerasen in Hinsicht auf Blühzeit und Stress N2 - Polyadenylation is a decisive 3’ end processing step during the maturation of pre-mRNAs. The length of the poly(A) tail has an impact on mRNA stability, localization and translatability. Accordingly, many eukaryotic organisms encode several copies of canonical poly(A) polymerases (cPAPs). The disruption of cPAPs in mammals results in lethality. In plants, reduced cPAP activity is non-lethal. Arabidopsis encodes three nuclear cPAPs, PAPS1, PAPS2 and PAPS4, which are constitutively expressed throughout the plant. Recently, the detailed analysis of Arabidopsis paps1 mutants revealed a subset of genes that is preferentially polyadenylated by the cPAP isoform PAPS1 (Vi et al. 2013). Thus, the specialization of cPAPs might allow the regulation of different sets of genes in order to optimally face developmental or environmental challenges. To gain insights into the cPAP-based gene regulation in plants, the phenotypes of Arabidopsis cPAPs mutants under different conditions are characterized in detail in the following work. An involvement of all three cPAPs in flowering time regulation and stress response regulation is shown. While paps1 knockdown mutants flower early, paps4 and paps2 paps4 knockout mutants exhibit a moderate late-flowering phenotype. PAPS1 promotes the expression of the major flowering inhibitor FLC, supposedly by specific polyadenylation of an FLC activator. PAPS2 and PAPS4 exhibit partially overlapping functions and ensure timely flowering by repressing FLC and at least one other unidentified flowering inhibitor. The latter two cPAPs act in a novel regulatory pathway downstream of the autonomous pathway component FCA and act independently from the polyadenylation factors and flowering time regulators CstF64 and FY. Moreover, PAPS1 and PAPS2/PAPS4 are implicated in different stress response pathways in Arabidopsis. Reduced activity of the poly(A) polymerase PAPS1 results in enhanced resistance to osmotic and oxidative stress. Simultaneously, paps1 mutants are cold-sensitive. In contrast, PAPS2/PAPS4 are not involved in the regulation of osmotic or cold stress, but paps2 paps4 loss-of-function mutants exhibit enhanced sensitivity to oxidative stress provoked in the chloroplast. Thus, both PAPS1 and PAPS2/PAPS4 are required to maintain a balanced redox state in plants. PAPS1 seems to fulfil this function in concert with CPSF30, a polyadenylation factor that regulates alternative polyadenylation and tolerance to oxidative stress. The individual paps mutant phenotypes and the cPAP-specific genetic interactions support the model of cPAP-dependent polyadenylation of selected mRNAs. The high similarity of the polyadenylation machineries in yeast, mammals and plants suggests that similar regulatory mechanisms might be present in other organism groups. The cPAP-dependent developmental and physiological pathways identified in this work allow the design of targeted experiments to better understand the ecological and molecular context underlying cPAP-specialization. N2 - Polyadenylierung ist ein entscheidender Schritt der 3‘-End-Prozessierung und somit der Reifung von prä-mRNAs. Die Länge des Poly(A)-Schwanzes entscheidet unter anderem über die Stabilität und Lokalisierung von mRNAs. Viele Eukaryoten besitzen mehrere Kopien der kanonischen Poly(A)-Polymerasen (PAP). In Säugetieren ist das Ausknocken dieser Enzyme letal. Pflanzen mit reduzierter PAP-Aktivität sind hingegen überlebensfähig. Arabidopsis exprimiert drei im Zellkern lokalisierte PAPs namens PAPS1, PAPS2 und PAPS4. Kürzlich ergab die Analyse von Arabidopsis paps1-Mutanten, dass eine Gen-Untergruppe vorzugsweise von PAPS1 polyadenyliert wird (Vi et al. 2013). Die Spezialisierung der PAPs könnte der Regulierung verschiedener Gengruppen in Anpassung an die Pflanzenentwicklung und an bestimmte Umweltbedingungen dienen. In der vorliegenden Arbeit werden die Phänotypen von Arabidopsis PAP-Mutanten unter verschiedenen Bedingungen im Detail charakterisiert, um die PAP-basierte Genregulation besser zu verstehen. Es wird gezeigt, dass alle drei PAPs an der Regulation der Blühzeit und an der Regulation von Stressantworten beteiligt sind. Während paps1-Mutanten früh blühen, zeigen paps4- und paps2 paps4-Mutanten einen spät blühenden Phänotypen. PAPS1 fördert die Expression des Blühzeitinhibitors FLC vermutlich über die Polyadenylierung eines FLC-Aktivators. PAPS2 und PAPS4 haben teilweise überlappende Funktionen und unterdrücken die Expression von FLC und mindestens einem weiteren, bisher unbekannten Blühzeitinhibitor. Die beiden PAPs agieren in einem neu entdeckten, genetischen Pfad gemeinsam mit dem Blühzeitregulator FCA, jedoch unabhängig von den Polyadenylierungsfaktoren und Blühzeitregulatoren CstF64 und FY. Des Weiteren regulieren PAPS1 und PAPS2/PAPS4 verschiedene Stressantworten. Das Reduzieren der PAPS1-Aktivität führt zu verstärkter Resistenz gegen osmotischen und oxidativen Stress, bei gleichzeitig erhöhter Kältesensitivität der Pflanzen. PAPS2/PAPS4 sind im Gegensatz dazu nicht an der Regulation von Kälte- oder osmotischem Stress beteiligt. Die paps2 paps4-Mutanten besitzen jedoch reduzierte Toleranz gegen oxidativen Stress in Chloroplasten. Das heißt, sowohl PAPS1 als auch PAPS2/PAPS4 sind nötig, um einen ausgeglichenen Redoxstatus der Pflanzenzellen zu gewährleisten. PAPS1 arbeitet bei dieser Regulation scheinbar mit dem Polyadenylierungsfaktor CPSF30 zusammen. Die individuellen Phänotypen der paps-Mutanten und die spezifischen genetischen Interaktionen der Poly(A)-Polymerasen in Arabidopsis unterstützen das Modell der PAP-abhängigen Polyadenylierung von selektierten mRNAs. Da die Polyadenylierungskomplexe in Hefen, Säugetieren und Pflanzen starke Ähnlichkeiten aufweisen, ist es denkbar, dass dieser Regulierungsmechanismus auch in anderen Organismengruppen präsent ist. Basierend auf den Ergebnissen dieser Arbeit können gezielt weitere Experimente entwickelt werden, um die ökologischen und molekularen Grundlagen der PAP-Spezialisierung zu untersuchen. KW - polyadenylation KW - flowering KW - Polyadenylierung KW - Arabidopsis KW - Poly(A)-Polymerasen KW - Blühzeit Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78015 ER - TY - THES A1 - Czechowski, Tomasz T1 - Nitrogen signalling in Arabidopsis thaliana T1 - Stickstoff Signalling in Arabidopsis thaliana N2 - Nitrogen is an essential macronutrient for plants and nitrogen fertilizers are indispensable for modern agriculture. Unfortunately, we know too little about how plants regulate their use of soil nitrogen, to maximize fertilizers-N use by crops and pastures. This project took a dual approach, involving forward and reverse genetics, to identify N-regulators in plants, which may prove useful in the future to improve nitrogen-use efficiency in agriculture. To identify nitrogen-regulated transcription factor genes in Arabidopsis that may control N-use efficiency we developed a unique resource for qRT-PCR measurements on all Arabidpsis transcription factor genes. Using closely spaced, gene-specific primer pairs and SYBR® Green to monitor amplification of double-stranded DNA, transcript levels of 83% of all target genes could be measured in roots or shoots of young Arabidopsis wild-type plants. Only 4% of reactions produced non-specific PCR products, and 13% of TF transcripts were undetectable in these organs. Measurements of transcript abundance were quantitative over six orders of magnitude, with a detection limit equivalent to one transcript molecule in 1000 cells. Transcript levels for different TF genes ranged between 0.001-100 copies per cell. Real-time RT-PCR revealed 26 root-specific and 39 shoot-specific TF genes, most of which have not been identified as organ-specific previously. An enlarged and improved version of the TF qRT-PCR platform contains now primer pairs for 2256 Arabidopsis TF genes, representing 53 gene families and sub-families arrayed on six 384-well plates. Set-up of real-time PCR reactions is now fully robotized. One researcher is able to measure expression of all 2256 TF genes in a single biological sample in a just one working day. The Arabidopsis qRT-PCT platform was successfully used to identify 37 TF genes which transcriptionaly responded at the transcriptional level to N-deprivation or to nitrate per se. Most of these genes have not been characterized previously. Further selection of TF genes based on the responses of selected candidates to other macronutrients and abiotic stresses allowed to distinguish between TFs regulated (i) specifically by nitrogen (29 genes) (ii) regulated by general macronutrient or by salt and osmotic stress (6 genes), and (iii) responding to all major macronutrients and to abiotic stresses. Most of the N-regulated TF genes were also regulated by carbon. Further characterization of sixteen selected TF genes, revealed: (i) lack of transcriptional response to organic nitrogen, (ii) two major types of kinetics of induction by nitrate, (iii) specific responses for the majority of the genes to nitrate but not downstream products of nitrate assimilation. All sixteen TF genes were cloned into binary vectors for constitutive and ethanol inducible over expression, and the first generation of transgenic plants were obtained for almost all of them. Some of the plants constitutively over expressing TF genes under control of the 35S promoter revealed visible phenotypes in T1 generation. Homozygous T-DNA knock out lines were also obtained for many of the candidate TF genes. So far, one knock out line revealed a visible phenotype: retardation of flowering time. A forward genetic approach using an Arabidopsis ATNRT2.1 promoter : Luciferase reporter line, resulted in identification of eleven EMS mutant reporter lines affected in induction of ATNRT2.1 expression by nitrate. These lines could by divided in the following classes according to expression of other genes involved in primary nitrogen and carbon metabolism: (i) lines affected exclusively in nitrate transport, (ii) those affected in nitrate transport, acquisition, but also in glycolysis and oxidative pentose pathway, (iii) mutants affected moderately in nitrate transport, oxidative pentose pathway and glycolysis but not in primary nitrate assimilation. Thus, several different N-regulatory genes may have been mutated in this set of mutants. Map-based cloning has begun to identify the genes affected in these mutants. N2 - Stickstoff ist einer der wichtigsten Makroelemente in der Natur und sein eingeschränktes Vorkommen ist häufig ein limitierender Faktor für pflanzliches Wachstum. In der Landwirtschaft eingesetzte Stickstoff-Dünger werden häufig nicht vollständig von Getreide- oder anderen kultivierten Pflanzen genutzt, sondern in die umliegenden Gewässer oder das Grundwasser ausgewaschen. Das Verständnis von pflanzlichen Signalprozessen kann helfen, Stickstoffaufnahme und -assimilation zu kontrollieren und somit den Einsatz von stickstoffhaltigen Düngemitteln in der Landwirtschaft zu reduzieren. Die meisten der in den pflanzlichen Stickstoffstoffwechsel involvierten Gene werden auf Transkriptionsebene reguliert. Dies geschieht durch sogenannte Transkriptionsfaktoren (TFs), Proteine, die von Genen anderer Genfamilien kodiert werden. Im Rahmen dieser Promotion wurde eine einzigartige und neue Ressource zur Quantifizierung der Expressionsniveaus solcher Transkriptionsfaktoren der Modellpflanze Arabidopsis thaliana entwickelt und getestet. Dabei konnte die beispiellose Robustheit, Genauigkeit und Präzision dieser PCR-basierten Methode gezeigt werden. Mit Hilfe dieses experimentellen Aufbaus wurden Transkriptionsfaktoren, potentielle Regulatoren von Genen, die in Stickstoffmetabolismus involviert sind, identifiziert und charakterisiert. Um die Funktionsweise dieser Gene besser zu verstehen, wurden transgene Pflanzen erzeugt und identifiziert, die entweder erhöhte oder chemisch induzierbare Transkription und/oder einen partiellen oder vollständigen Verlust der Aktivität dieser Gene aufweisen. Die Analyse der Transkriptionsfaktoren, die unter die Kontrolle eines induzierbaren Promoters gestellt wurden, soll helfen, die genauen Zielgene dieser TFs zu identifizieren und ihre Rolle im Stickstoffmetabolismus zu erklären. Darüber hinaus bieten sie die Chance, Hierarchieebenen innerhalb der verschiedenen TFs zu erkennen. Überexpression von Transkriptionsfaktoren kann zur Generierung von Phänotypen führen, die von direktem biotechnologischen Interesse sind, wie z.B. Pflanzen mit erhöhtem Stickstoffgehalt (Aminosäuregehalt), die besser an Situationen mit Stickstoffmangel angepasst sind. Neben diesen Transkriptionsfaktoren wurden allerdings auch Mutanten mit einem genetischen Defekt in einem der wichtigsten Gene, das für den Nitrattransport in Wurzeln von Arabidopsis verantwortlich ist, identifiziert. KW - Stickstoff KW - Schmalwand KW - Transkriptionsfaktor KW - qRT-PCR KW - Nitrogen KW - Arabidopsis KW - Transcription facotrs KW - qRT-PCR Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5445 ER - TY - JOUR A1 - Czarnocka, Weronika A1 - Van Der Kelen, Katrien A1 - Willems, Patrick A1 - Szechynska-Hebda, Magdalena A1 - Shahnejat-Bushehri, Sara A1 - Balazadeh, Salma A1 - Rusaczonek, Anna A1 - Müller-Röber, Bernd A1 - Van Breusegem, Frank A1 - Karpinski, Stanislaw T1 - The dual role of LESION SIMULATING DISEASE 1 as a condition-dependent scaffold protein and transcription regulator JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator. KW - Arabidopsis KW - thaliana KW - dry weight KW - LSD1 KW - oxidative stress KW - protein interaction KW - transcription regulation Y1 - 2017 U6 - https://doi.org/10.1111/pce.12994 SN - 0140-7791 SN - 1365-3040 VL - 40 SP - 2644 EP - 2662 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Castellanos, Reynel Urrea A1 - Friedrich, Thomas A1 - Petrovic, Nevena A1 - Altmann, Simone A1 - Brzezinka, Krzysztof A1 - Gorka, Michal A1 - Graf, Alexander A1 - Bäurle, Isabel T1 - FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis JF - The plant journal N2 - Plants can mitigate environmental stress conditions through acclimation. In the case of fluctuating stress conditions such as high temperatures, maintaining a stress memory enables a more efficient response upon recurring stress. In a genetic screen forArabidopsis thalianamutants impaired in the memory of heat stress (HS) we have isolated theFORGETTER2(FGT2) gene, which encodes a type 2C protein phosphatase (PP2C) of the D-clade.Fgt2mutants acquire thermotolerance normally; however, they are defective in the memory of HS. FGT2 interacts with phospholipase D alpha 2 (PLD alpha 2), which is involved in the metabolism of membrane phospholipids and is also required for HS memory. In summary, we have uncovered a previously unknown component of HS memory and identified the FGT2 protein phosphatase and PLD alpha 2 as crucial players, suggesting that phosphatidic acid-dependent signaling or membrane composition dynamics underlie HS memory. KW - priming KW - protein phosphatase KW - stress memory KW - heat stress KW - Arabidopsis KW - thaliana Y1 - 2020 U6 - https://doi.org/10.1111/tpj.14927 SN - 0960-7412 SN - 1365-313X VL - 104 IS - 1 SP - 7 EP - 17 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Breuninger, Holger A1 - Lenhard, Michael T1 - Expression of the central growth regulator BIG BROTHER is regulated by multiple cis-elements N2 - Background Much of the organismal variation we observe in nature is due to differences in organ size. The observation that even closely related species can show large, stably inherited differences in organ size indicates a strong genetic component to the control of organ size. Despite recent progress in identifying factors controlling organ growth in plants, our overall understanding of this process remains limited, partly because the individual factors have not yet been connected into larger regulatory pathways or networks. To begin addressing this aim, we have studied the upstream regulation of expression of BIG BROTHER (BB), a central growth-control gene in Arabidopsis thaliana that prevents overgrowth of organs. Final organ size and BB expression levels are tightly correlated, implying the need for precise control of its expression. BB expression mirrors proliferative activity, yet the gene functions to limit proliferation, suggesting that it acts in an incoherent feedforward loop downstream of growth activators to prevent over-proliferation. Results To investigate the upstream regulation of BB we combined a promoter deletion analysis with a phylogenetic footprinting approach. We were able to narrow down important, highly conserved, cis-regulatory elements within the BB promoter. Promoter sequences of other Brassicaceae species were able to partially complement the A. thaliana bb-1 mutant, suggesting that at least within the Brassicaceae family the regulatory pathways are conserved. Conclusions This work underlines the complexity involved in precise quantitative control of gene expression and lays the foundation for identifying important upstream regulators that determine BB expression levels and thus final organ size. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 374 KW - Asymmetric interlaced PCR KW - Organ Groth KW - DNA Elements KW - Arabidopsis KW - Plants KW - Brassicaceae KW - Phylogeny KW - Database KW - Place KW - Size Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400971 ER - TY - THES A1 - Blacha, Anna Maria T1 - Investigating the role of regulatory genes in heterosis for superior growth and biomass production in Arabidopsis thaliana T1 - Die Rolle von Regulatorischen Genen bei der Entstehung von Wachstums- und Biomassen-Heterosis in Arabidopsis thaliana N2 - ‘Heterosis’ is a term used in genetics and breeding referring to hybrid vigour or the superiority of hybrids over their parents in terms of traits such as size, growth rate, biomass, fertility, yield, nutrient content, disease resistance or tolerance to abiotic and abiotic stress. Parental plants which are two different inbred (pure) lines that have desired traits are crossed to obtain hybrids. Maximum heterosis is observed in the first generation (F1) of crosses. Heterosis has been utilised in plant and animal breeding programs for at least 90 years: by the end of the 21st century, 65% of worldwide maize production was hybrid-based. Generally, it is believed that an understanding of the molecular basis of heterosis will allow the creation of new superior genotypes which could either be used directly as F1 hybrids or form the basis for the future breeding selection programmes. Two selected accessions of a research model plant Arabidopsis thaliana (thale cress) were crossed to obtain hybrids. These typically exhibited a 60-80% increase of biomass when compared to the average weight of both parents. This PhD project focused on investigating the role of selected regulatory genes given their potentially key involvement in heterosis. In the first part of the project, the most appropriate developmental stage for this heterosis study was determined by metabolite level measurements and growth observations in parents and hybrids. At the selected stage, around 60 candidate regulatory genes (i.e. differentially expressed in hybrids when compared to parents) were identified. Of these, the majority were transcription factors, genes that coordinate the expression of other genes. Subsequent expression analyses of the candidate genes in biomass-heterotic hybrids of other Arabidopsis accessions revealed a differential expression in a gene subset, highlighting their relevance for heterosis. Moreover, a fraction of the candidate regulatory genes were found within DNA regions closely linked to the genes that underlie the biomass or growth heterosis. Additional analyses to validate the role of selected candidate regulatory genes in heterosis appeared insufficient to establish their role in heterosis. This uncovered a need for using novel approaches as discussed in the thesis. Taken together, the work provided an insight into studies on the molecular mechanisms underlying heterosis. Although studies on heterosis date back to more than one hundred years, this project as many others revealed that more investigations will be needed to uncover this phenomenon. N2 - „Heterosis“ ist ein in der Genetik und der Züchtung verwendeter Begriff, der die Hybridwüchsigkeit oder die Überlegenheit der Hybriden über ihre Eltern in Bezug auf Eigenschaften wie Größe, Wachstumsrate, Biomasse, Fruchtbarkeit, Ertrag, Nährstoffgehalt, Widerstand gegen Krankheiten oder Toleranz in Bezug auf biotischen oder abiotischen Stress bezeichnet. Um Hybriden zu erzeugen, werden aus zwei verschiedenen Inzuchtlinien (reine Linien) bestehende Elternpflanzen, welche die gewünschten Eigenschaften besitzen, miteinander gekreuzt. Der stärkste Heterosiseffekt wird in der ersten Kreuzungsgeneration (F1) beobachtet. Heterosis wird in Pflanzen- und Tierzuchtprogrammen schon seit mindestens 90 Jahren genutzt. So beruhte zum Ende des 20. Jahrhunderts 65% der weltweiten Maisproduktion auf Hybridzüchtung. Es wird angenommen, dass ein Verständnis der molekularen Grundlagen der Heterosis die Schaffung neuer, überlegener Genotypen erlaubt, die dann direkt als F1-Hybriden verwendet, oder als Grundlage für zukünftige Zucht- und Selektionsprogramme dienen können. Zwei ausgewählte Akzessionen der Modellpflanze Arabidopsis thaliana (Ackerschmalwand) wurden miteinander gekreuzt, um Hybriden zu erzeugen. Verglichen mit dem durchschnittlichen Gewicht ihren beiden Elternlinien zeigten diese eine 60-80%ige Zunahme an Biomasse. Diese Doktorarbeit befasst sich damit, die Rolle ausgewählter, regulatorischer Gene und ihre mögliche Schlüsselrolle bei der Heterosis zu untersuchen. Im ersten Teil der Arbeit wurde anhand der Gehaltsbestimmung ausgewählter Stoffwechselprodukte und Wachstumsbeobachtungen bei den Eltern und Hybriden das günstigste Entwicklungsstadium für diese Heterosisstudie bestimmt. In diesem Entwicklungsstadium wurden ungefähr 60 regulatorische Gene (d.h. Expressionsunterschiede zwischen Hybriden und Elternlinien) als Kandidaten identifiziert. Ein Großteil dieser Kandidaten waren Transkriptionsfaktoren, also Gene, die die Expression anderer Gene regulieren. Die nachfolgende Expressionsanalyse dieser Kandidatengene in Biomasse-Heterosis Hybriden anderer Arabidopsis Akzessionen zeigte bei einem Teil dieser Gene Expressionsunterschiede, die ihre Bedeutung bei der Heterosis betonen. Darüber hinaus wurde ein Teil dieser regulatorischen Kandidatengene innerhalb von DNS-Regionen gefunden, die eng mit Biomasse- oder Wachstumsheterosis in Verbindung stehen, und somit ihre Wichtigkeit in Bezug auf Heterosis unterstreichen. Weitergehende Analysen um die Rolle dieser ausgewählten regulatorischen Kandidatengene bei der Heterosis aufzuklären, waren nicht aussagekräftig genug, um ihre Rolle bei der Heterosis zu bestätigen. In der Doktorarbeit wird die Notwendigkeit neue Wege zur Aufklärung der Heterosis zu finden, diskutiert. Zusammenfassend gibt diese Doktorarbeit einen Einblick über Studien der molekularen Mechanismen, die der Heterosis zugrunde liegen. Diese Arbeit zeigt, dass obwohl Heterosis bereits seit mehr als hundert Jahren studiert wird, weitere Untersuchungen zur Aufklärung dieses Phänomens notwendig sind. KW - Heterosis KW - Arabidopsis KW - Biomasse KW - Regulatorische Gene KW - heterosis KW - Arabidopsis KW - biomass KW - regulatory genes Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-46146 ER - TY - JOUR A1 - Benina, Maria A1 - Ribeiro, Dimas Mendes A1 - Gechev, Tsanko S. A1 - Müller-Röber, Bernd A1 - Schippers, Jos H. M. T1 - A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood. Here we analysed leaf- and tissue-specific translatomes using a set of transgenic Arabidopsis thaliana lines expressing a FLAG-tagged ribosomal protein to immunopurify polysome-bound mRNAs before and after oxidative stress. We determined transcript levels of 171 ROS-responsive genes upon paraquat treatment, which causes formation of superoxide radicals, at the whole-organ level. Furthermore, the translation of mRNAs was determined for five cell types: mesophyll, bundle sheath, phloem companion, epidermal and guard cells. Mesophyll and bundle sheath cells showed the strongest response to paraquat treatment. Interestingly, several ROS-responsive transcription factors displayed cell type-specific translation patterns, while others were translated in all cell types. In part, cell type-specific translation could be explained by the length of the 5-untranslated region (5-UTR) and the presence of upstream open reading frames (uORFs). Our analysis reveals insights into the translational regulation of ROS-responsive genes, which is important to understanding cell-specific responses and functions during oxidative stress. The study illustrates the response of different Arabidopsis thaliana leaf cells and tissues to oxidative stress at the translational level, an aspect of reactive oxygen species (ROS) biology that has been little studied in the past. Our data reveal insights into how translational regulation of ROS-responsive genes is fine-tuned at the cellular level, a phenomenon contributing to the integrated physiological response of leaves to stresses involving changes in ROS levels. KW - Arabidopsis KW - gene regulation KW - oxidative stress KW - tissue-specific KW - translation Y1 - 2015 U6 - https://doi.org/10.1111/pce.12355 SN - 0140-7791 SN - 1365-3040 VL - 38 IS - 2 SP - 349 EP - 363 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Balazadeh, Salma A1 - Schildhauer, Joerg A1 - Araujo, Wagner L. A1 - Munne-Bosch, Sergi A1 - Fernie, Alisdair R. A1 - Proost, Sebastian A1 - Humbeck, Klaus A1 - Müller-Röber, Bernd T1 - Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences JF - Journal of experimental botany N2 - Leaf senescence is a developmentally controlled process, which is additionally modulated by a number of adverse environmental conditions. Nitrogen shortage is a well-known trigger of precocious senescence in many plant species including crops, generally limiting biomass and seed yield. However, leaf senescence induced by nitrogen starvation may be reversed when nitrogen is resupplied at the onset of senescence. Here, the transcriptomic, hormonal, and global metabolic rearrangements occurring during nitrogen resupply-induced reversal of senescence in Arabidopsis thaliana were analysed. The changes induced by senescence were essentially in keeping with those previously described; however, these could, by and large, be reversed. The data thus indicate that plants undergoing senescence retain the capacity to sense and respond to the availability of nitrogen nutrition. The combined data are discussed in the context of the reversibility of the senescence programme and the evolutionary benefit afforded thereby. Future prospects for understanding and manipulating this process in both Arabidopsis and crop plants are postulated. KW - Arabidopsis KW - gene expression KW - metabolomics KW - nitrogen limitation KW - senescence KW - transcriptome Y1 - 2014 U6 - https://doi.org/10.1093/jxb/eru119 SN - 0022-0957 SN - 1460-2431 VL - 65 IS - 14 SP - 3975 EP - 3992 PB - Oxford Univ. Press CY - Oxford ER - TY - THES A1 - Arvidsson, Samuel Janne T1 - Identification of growth-related tonoplast proteins in Arabidopsis thaliana T1 - Identifizierung von wachstumsrelevanten Tonoplast-Proteinen in Arabidopsis thaliana (Ackerschmalwand) N2 - In a very simplified view, the plant leaf growth can be reduced to two processes, cell division and cell expansion, accompanied by expansion of their surrounding cell walls. The vacuole, as being the largest compartment of the plant cell, plays a major role in controlling the water balance of the plant. This is achieved by regulating the osmotic pressure, through import and export of solutes over the vacuolar membrane (the tonoplast) and by controlling the water channels, the aquaporins. Together with the control of cell wall relaxation, vacuolar osmotic pressure regulation is thought to play an important role in cell expansion, directly by providing cell volume and indirectly by providing ion and pH homestasis for the cytosoplasm. In this thesis the role of tonoplast protein coding genes in cell expansion in the model plant Arabidopsis thaliana is studied and genes which play a putative role in growth are identified. Since there is, to date, no clearly identified protein localization signal for the tonoplast, there is no possibility to perform genome-wide prediction of proteins localized to this compartment. Thus, a series of recent proteomic studies of the tonoplast were used to compile a list of cross-membrane tonoplast protein coding genes (117 genes), and other growth-related genes from notably the growth regulating factor (GRF) and expansin families were included (26 genes). For these genes a platform for high-throughput reverse transcription quantitative real time polymerase chain reaction (RT-qPCR) was developed by selecting specific primer pairs. To this end, a software tool (called QuantPrime, see http://www.quantprime.de) was developed that automatically designs such primers and tests their specificity in silico against whole transcriptomes and genomes, to avoid cross-hybridizations causing unspecific amplification. The RT-qPCR platform was used in an expression study in order to identify candidate growth related genes. Here, a growth-associative spatio-temporal leaf sampling strategy was used, targeting growing regions at high expansion developmental stages and comparing them to samples taken from non-expanding regions or stages of low expansion. Candidate growth related genes were identified after applying a template-based scoring analysis on the expression data, ranking the genes according to their association with leaf expansion. To analyze the functional involvement of these genes in leaf growth on a macroscopic scale, knockout mutants of the candidate growth related genes were screened for growth phenotypes. To this end, a system for non-invasive automated leaf growth phenotyping was established, based on a commercially available image capture and analysis system. A software package was developed for detailed developmental stage annotation of the images captured with the system, and an analysis pipeline was constructed for automated data pre-processing and statistical testing, including modeling and graph generation, for various growth-related phenotypes. Using this system, 24 knockout mutant lines were analyzed, and significant growth phenotypes were found for five different genes. N2 - Sehr vereinfacht gesagt kann Blattwachstum auf zwei Prozesse reduziert werden, Zellteilung und Zellexpansion, gefolgt von Zellwandexpansion. Die Vakuole, das größte Organell der Zelle, übt durch die Kontrolle des Wasserhaushaltes der Pflanze eine wichtige Funktion im Zusammenhang mit der Zellexpansion aus. Dies geschieht durch die Regulierung des osmotischen Druckes, durch Import und Export von organischen und anorganischen Ionen über die Vakuolenmembran (den Tonoplast) und durch die Kontrolle ihrer Wasserkanäle (der Aquaporine). Es wird angenommen, dass die Regulierung des vakuolären osmotischen Druckes eine große Rolle bei der Zellexpansion spielt, da der osmotische Druck die Stärke der mechanischen Kraft des Tonoplast auf die Plasmamembran und die Zellwand bestimmt. In dieser Dissertation wird die Rolle von Tonoplastproteinen und ihrer Gene auf die Zellexpansion anhand der Modellpflanze Arabidopsis thaliana (Ackerschmalwand) untersucht, und Kandidaten für wachstumsrelevante Gene werden identifiziert. Da bisher noch kein Signal für die Lokalisierung von Proteinen im Tonoplast identifiziert wurde, gibt es keine Möglichkeit, genomweite Voraussagen über solche Proteinlokalisierungen zu machen. Daher haben wir eine Reihe von aktuellen Proteom-Studien genutzt, um eine Liste von 117 Genen, die für transmembrane tonoplastproteinkodierende Gene kodieren, zusammenzustellen. Zusätzlich wurden andere wachstumsrelevante Gene und Zellzyklus-Gene in die Liste aufgenommen (38 Gene). Die Expression der Gene während der Blattentwicklung sollte mittels einer sensitiven Technik, der quantitativen Polymerasekettenreaktion (qPCR), untersucht werden. Um rasch die für dieses Verfahren notwendigen Oligonukleotide zu entwerfen, wurde ein Computerprogramm („QuantPrime“) entwickelt. Das Programm entwirft automatisch solche Oligonukleotide und überprüft deren Spezifizität in silico auf Ebene der Transkriptome und Genome um Kreuz-Hybridisierungen zu vermeiden, die zu unspezifischen Amplifikationen führen würden. Die qPCR-Plattform wurde in einer Expressions-Studie eingesetzt, um wachstumsrelevante Gen-Kandidaten zu identifizieren. Um wachstumsaktive und nichtaktive Prozesse vergleichen zu können, wurden Proben von unterschiedlichen Bereichen des Blattes zu unterschiedlichen Wachstumsstadien beprobt. Eine musterbasierte Expressionsdatenanalyse wurde eingesetzt, um die Gene hinischtlich ihrer Assoziation mit der Blattexpansionen in eine Rangordnung zu bringen. Die Gene mit dem höchsten Rang wurden als Kandidaten für weitere Experimente ausgewählt. Um die funktionelle Beteiligung dieser Gene auf einer makroskopischen Ebene zu untersuchen, wurden Knockout-Mutanten für die Gen-Kandidaten hinsichtlich ihres Wachstums analysiert. Zu diesem Zweck wurde ein System für die automatisierte Phänotypisierung des Blattwachstums etabliert. Zum einen wurde ein Programm-Paket für detaillierte Annotation von Wachstumsstadien und zum anderen ein Analyse-Paket für automatisierte Datenvorbereitung und statistische Tests entwickelt. Das Analyse-Paket erlaubt die Modellierung und graphische Darstellung verschiedener wachstumsrelevanter Phänotypen. Mit Hilfe dieses Systems wurden 24 Knockout-Mutanten untersucht und signifikante Phänotypen wurden für fünf verschiedene Gene gefunden. KW - Ackerschmalwand KW - Wachstum KW - Tonoplast KW - qPCR KW - Phänotypisierung KW - Arabidopsis KW - Growth KW - Tonoplast KW - qPCR KW - Phenotyping Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52408 ER - TY - JOUR A1 - Allu, Annapurna Devi A1 - Soja, Aleksandra Maria A1 - Wu, Anhui A1 - Szymanski, Jedrzej A1 - Balazadeh, Salma T1 - Salt stress and senescence: identification of cross-talk regulatory components JF - Journal of experimental botany N2 - Leaf senescence is an active process with a pivotal impact on plant productivity. It results from extensive signalling cross-talk coordinating environmental factors with intrinsic age-related mechanisms. Although many studies have shown that leaf senescence is affected by a range of external parameters, knowledge about the regulatory systems that govern the interplay between developmental programmes and environmental stress is still vague. Salinity is one of the most important environmental stresses that promote leaf senescence and thus affect crop yield. Improving salt tolerance by avoiding or delaying senescence under stress will therefore play an important role in maintaining high agricultural productivity. Experimental evidence suggests that hydrogen peroxide (H2O2) functions as a common signalling molecule in both developmental and salt-induced leaf senescence. In this study, microarray-based gene expression profiling on Arabidopsis thaliana plants subjected to long-term salinity stress to induce leaf senescence was performed, together with co-expression network analysis for H2O2-responsive genes that are mutually up-regulated by salt induced-and developmental leaf senescence. Promoter analysis of tightly co-expressed genes led to the identification of seven cis-regulatory motifs, three of which were known previously, namely CACGTGT and AAGTCAA, which are associated with reactive oxygen species (ROS)-responsive genes, and CCGCGT, described as a stress-responsive regulatory motif, while the others, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG were not characterized previously. These motifs are proposed to be novel elements involved in the H2O2-mediated control of gene expression during salinity stress-triggered and developmental senescence, acting through upstream transcription factors that bind to these sites. KW - Arabidopsis KW - hydrogen peroxide KW - longevity KW - reactive oxygen species KW - salt stress KW - senescence KW - signal cross-talk KW - transcription factor Y1 - 2014 U6 - https://doi.org/10.1093/jxb/eru173 SN - 0022-0957 SN - 1460-2431 VL - 65 IS - 14 SP - 3993 EP - 4008 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Allu, Annapurna Devi A1 - Brotman, Yariv A1 - Xue, Gang-Ping A1 - Balazadeh, Salma T1 - Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection JF - EMBO reports N2 - Responses to pathogens, including host transcriptional reprogramming, require partially antagonistic signalling pathways dependent on the phytohormones salicylic (SA) and jasmonic (JA) acids. However, upstream factors modulating the interplay of these pathways are not well characterized. Here, we identify the transcription factor ANAC032 from Arabidopsis thaliana as one such regulator in response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). ANAC032 directly represses MYC2 activation upon Pst attack, resulting in blockage of coronatine-mediated stomatal reopening which restricts entry of bacteria into plant tissue. Furthermore, ANAC032 activates SA signalling by repressing NIMIN1, a key negative regulator of SA-dependent defence. Finally, ANAC032 reduces expression of JA-responsive genes, including PDF1.2A. Thus, ANAC032 enhances resistance to Pst by generating an orchestrated transcriptional output towards key SA- and JA-signalling genes coordinated through direct binding of ANAC032 to the MYC2, NIMIN1 and PDF1.2A promoters. KW - Arabidopsis KW - jasmonic acid KW - pathogens KW - salicylic acid KW - transcription factor Y1 - 2016 U6 - https://doi.org/10.15252/embr.201642197 SN - 1469-221X SN - 1469-3178 VL - 17 SP - 1578 EP - 1589 PB - Wiley-Blackwell CY - Hoboken ER -