TY - THES A1 - Sablowski, Daniel T1 - Spectroscopic analysis of the benchmark system Alpha Aurigae T1 - Spektroskopische Analysen des Vergleichssystems alpha Aurigae N2 - Binaries play an important role in observational and theoretical astrophysics. Since the mass and the chemical composition are key ingredients for stellar evolution, high-resolution spectroscopy is an important and necessary tool to derive those parameters to high confidence in binaries. This involves carefully measured orbital motion by the determination of radial velocity (RV) shifts and sophisticated techniques to derive the abundances of elements within the stellar atmosphere. A technique superior to conventional cross-correlation methods to determine RV shifts in known as spectral disentangling. Hence, a major task of this thesis was the design of a sophisticated software package for this approach. In order to investigate secondary effects, such as flux and line-profile variations, imprinting changes on the spectrum the behavior of spectral disentangling on such variability is a key to understand the derived values, to improve them, and to get information about the variability itself. Therefore, the spectral disentangling code presented in this thesis and available to the community combines multiple advantages: separation of the spectra for detailed chemical analysis, derivation of orbital elements, derivation of individual RVs in order to investigate distorted systems (either by third body interaction or relativistic effects), the suppression of telluric contaminations, the derivation of variability, and the possibility to apply the technique to eclipsing binaries (important for orbital inclination) or in general to systems that undergo flux-variations. This code in combination with the spectral synthesis codes MOOG and SME was used in order to derive the carbon 12C/13C isotope ratio (CIR) of the benchmark binary Capella. The observational result will be set into context with theoretical evolution by the use of MESA models and resolves the discrepancy of theory and observations existing since the first measurement of Capella's CIR in 1976. The spectral disentangling code has been made available to the community and its applicability to completely different behaving systems, Wolf-Rayet stars, have also been investigated and resulted in a published article. Additionally, since this technique relies strongly on data quality, continues development of scientific instruments to achieve best observational data is of great importance in observational astrophysics. That is the reason why there has also been effort in astronomical instrumentation during the work on this thesis. N2 - Doppelsterne spielen eine wichtige Rolle in der beobachtenden und theoretischen Astrophysik. Die Massen und die chemische Zusammensetzung der Sterne sind dabei ausschlaggebende Parameter. Die wichtige und notwendige Methode um diese zu bestimmen ist hochaufgelöste Spektroskopie. Dies beinhaltet eine penible Bestimmung der orbitalen Bewegung durch die Vermessung von Radialgeschwindigkeitsverschiebungen (RV) und fortgeschrittene Techniken zur Bestimmung der Häufigkeiten der in der Sternatmosphäre vorhandenen Elemente. Gegenüber der konventionellen Kreuzkorrelation zur Bestimmung der RV-Verschiebungen, gilt die Methode des sogenannten 'spectral disentanglings' als überlegen. Daher bestand ein Großteil der vorliegenden Arbeit darin, eine solche Methode in einem weiterentwickelten Softwarepacket zu realisieren. Um sekundäre Effekte zu verstehen, welche zu weiteren Änderungen im Spektrum führen, also insbesondere solche wie Fluss- und Linienprofilvariationen, ist es von zentraler Bedeutung das Verhalten des spectral disentangling durch solche Variabilitäten zu verstehen, sodass die ermittelten Größen besser interpretiert und verbessert, sowie Informationen über die Variabilität selbst abgeleitet werden können. Daher vereint der in dieser Arbeit vorgestellte und der Allgemeinheit offen stehende Algorithmus für das spectral disentangling mehrere Vorteile: Separation der Spektren für detaillierte chemische Analysen, Ableitung der orbitalen Bahnelemente, Ableitung der einzelnen RV-Verschiebungen um auch gestörte Systeme (z.B. durch einen dritten Körper oder relativistische Effekte) analysieren zu können, die Reduktion des Einflusses tellurischer Kontamination, Ableitung der Variabilität und die Möglichkeit der Anwendung auf Bedeckungsveränderliche (wichtig zur Bestimmung der Inklination) bzw. allgemeiner auf Systeme mit Flussvariationen. Der vorgestellte Algorithmus wurde zusammen mit MOOG und SME zur Erzeugung synthetischer Spektren verwendet um das Kohlenstoff-12C/13C Isotopen-Verhältnis (KIV) des Referenzsystems Capella zu bestimmen. Dieses Ergebnis aus Beobachtungen wird in Kontext zur theoretischen Entwicklung durch Verwendung von MESA Modellen gesetzt und löst die Unstimmigkeit zwischen Beobachtung und Theorie die bereits seit der ersten Messung des KIV von Kapella von 1976 existiert. Der Algorithmus für das spectral disentangling ist der Allgemeinheit zugänglich gemacht und wurde auf vollkommen anders verhaltende Objekte, den Wolf-Rayet-Sternen, angewendet, was in einer publizierten Arbeit resultierte. Da die Methode stark von der Qualität der Beobachtungsdaten abhängt, ist eine kontinuierliche Weiterentwicklung der wissenschaftlichen Messtechnik der beobachtenden Astrophysik sehr wichtig um die bestmöglichsten Beobachtungsdaten gewinnen zu können. Daher wurden auch große Anstrengungen in der astronomischen Instrumentierung während dieser Arbeit unternommen. KW - Stellar physics KW - Stellar evolution KW - spectroscopy KW - instrumentation KW - carbon-isotope-ratio KW - Capella KW - Stellarphysik KW - Sternentwicklung KW - Spektroskopie KW - Instrumentierung KW - Kohlenstoff-Isotopen-Verhältnis KW - Kapella Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432396 ER - TY - THES A1 - Ramachandran, Varsha T1 - Massive star evolution, star formation, and feedback at low metallicity T1 - Massive Sternentwicklung, Sternentstehung, und das Feedback bei niedriger Metallizität BT - quantitative spectroscopy of OB stars in the Magellanic Clouds N2 - The goal of this thesis is to broaden the empirical basis for a better, comprehensive understanding of massive star evolution, star formation and feedback at low metallicity. Low metallicity massive stars are a key to understand the early universe. Quantitative information on metal-poor massive stars was sparse before. The quantitative spectroscopic studies of massive star populations associated with large-scale ISM structures were not performed at low metallicity before, but are important to investigate star-formation histories and feedback in detail. Much of this work relies on spectroscopic observations with VLT-FLAMES of ~500 OB stars in the Magellanic Clouds. When available, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. The two representative young stellar populations that have been studied are associated with the superbubble N 206 in the Large Magellanic Cloud (LMC) and with the supergiant shell SMC-SGS 1 in the Wing of the Small Magellanic Cloud (SMC), respectively. We performed spectroscopic analyses of the massive stars using the nonLTE Potsdam Wolf-Rayet (PoWR) model atmosphere code. We estimated the stellar, wind, and feedback parameters of the individual massive stars and established their statistical distributions. The mass-loss rates of N206 OB stars are consistent with theoretical expectations for LMC metallicity. The most massive and youngest stars show nitrogen enrichment at their surface and are found to be slower rotators than the rest of the sample. The N 206 complex has undergone star formation episodes since more than 30 Myr, with a current star formation rate higher than average in the LMC. The spatial age distribution of stars across the complex possibly indicates triggered star formation due to the expansion of the superbubble. Three very massive, young Of stars in the region dominate the ionizing and mechanical feedback among hundreds of other OB stars in the sample. The current stellar wind feedback rate from the two WR stars in the complex is comparable to that released by the whole OB sample. We see only a minor fraction of this stellar wind feedback converted into X-ray emission. In this LMC complex, stellar winds and supernovae equally contribute to the total energy feedback, which eventually powered the central superbubble. However, the total energy input accumulated over the time scale of the superbubble significantly exceeds the observed energy content of the complex. The lack of energy along with the morphology of the complex suggests a leakage of hot gas from the superbubble. With a detailed spectroscopic study of massive stars in SMC-SGS 1, we provide the stellar and wind parameters of a large sample of OB stars at low metallicity, including those in the lower mass-range. The stellar rotation velocities show a broad, tentatively bimodal distribution, with Be stars being among the fastest. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below 30 solar masses seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, more massive stars appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales. Our study showcases the importance of quantitative spectroscopy of massive stars with adequate stellar-atmosphere models in order to understand star-formation, evolution, and feedback. The stellar population analyses in the LMC and SMC make us understand that massive stars and their impact can be very different depending on their environment. Obviously, due to their different metallicity, the massive stars in the LMC and the SMC follow different evolutionary paths. Their winds differ significantly, and the key feedback agents are different. As a consequence, the star formation can proceed in different modes. N2 - Massereiche Sterne, also Sterne, die ihre Entwicklung mit mehr als acht Sonnenmassen starten, spielen die Hauptrolle in der chemischen Entwicklung des Universums. Darüberhinaus formen sie das sie umgebende interstellare Medium, aus dem sie entstanden sind, durch ihre ionisierende Strahlung und ihre starken Massenausflüsse in Form von Sternwinden und Supernovaexplosionen, das sogenannte Feedback. Diese Arbeit verbreitert die empirische Basis für ein besseres Verständnis der Entwicklung, Entstehung und des Feedbacks massereicher Sterne bei niedriger Metallizität, wie sie auch im frühen Universum herrschte, wesentlich. Hierfür wurden die Daten von zwei großen spektroskopischen Beobachtungskampagnen in der Großen (LMC) und in der Kleinen Magellanschen Wolke (SMC) - beides Galaxien mit erniedrigter Metallizität - mittels des Non-LTE Potsdam Wolf-Rayet (PoWR) Model Atmosphere Codes quantitativ analysiert, um wesentliche Stern-, Wind- und Feedbackparameter sowie ihre statistische Verteilung zu bestimmen und damit ein globales Bild der massereichen Sterne und ihrer Wechselwirkung mit der Umgebung zu erhalten. Diese Analysen stützen sich hauptsächlich auf Spektren aus dem optischen Bereich, die mit dem Fibre Large Array Multi Element Spectrograph (FLAMES) am Very Large Telescope (VLT) von ~ 500 OBSternen in den Magellanschen Wolken aufgenommen worden, ergänzt durch UV-Spektren aus den Archiven verschiedener UV-Satelliten. Die zwei repräsentativen jungen Sternpopulationen, die untersucht wurden, gehören zur Superbubble N206 in der LMC beziehungsweise zur Supergiant Shell SMC-SGS 1 im Wing der SMC. Die analysierte Stichprobe des N206-Komplexes umfasst alle heißen massereichen Sterne vom Typ OB, Of, und Wolf-Rayet, wobei letztere weit entwickelt und durch starke Sternwinde gekennzeichnet sind. Auf Basis unsere Analysen fanden wir heraus, dass der Komplex seit 30 Mio. Jahren mehrere Sternentstehungsepisoden durchlief. Die räumliche Altersverteilung dieser Sterne über den Komplex weist möglicherweise auf getriggerte Sternentstehung infolge der Ausdehnung der Superbubble hin. Drei sehr massereiche, junge Of-Sterne in dieser Region dominieren das ionisierende und mechanische Feedback unter hunderten von anderen OBSternen in der Region. Die SMC hat eine noch niedrigere Metallizität als die LMC, was sich u.a. auch in der Sternentwicklung niederschlagen sollte. Daher wurde mittels der Daten der Spektralanalysen der Supergiant Shell SMC-SGS 1 in der SMC zusammen mit weiteren Daten aus der Literatur das am dichtesten besiedelte Hertzsprung-Russell-Diagramm der massereichen Sterne in der SMC erstellt. Der Vergleich mit Sternentwicklungsrechnungen suggeriert eine Zweiteilung der Entwicklungswege massereicher Sterne in der SMC. Dabei scheint die gemessene Rotation der Sterne überraschenderweise keinen großen Einfluss zu haben. Wir vermuten daher, dass die Masse und Metallizität der Sterne zusammen hauptverantwortlich für die beobachtete Zweiteilung sind. Desweiteren konnte erstmalig auf einer breiten Datenbasis aufbauend die Korrelation zwischen Metallizität und Stärke von OB-Sternwinden etabliert werden, allerdings sind die ermittelten Windstärken weit schwächer als vorhergesagt (Weak-Wind-Problem) und in Sternentwicklungsrechnungen verwendet. Die Alter und räumliche Verteilung von massereichen Sternen zeigen, dass Sternentstehung seit über 100 Mio. Jahren in der ruhigen Region niedriger Dichte in der SMC eher stochastisch als sequenziell voranschreitet und höher ist als von Messungen diffuser Hα-Emission abgeleitet wurde. Das Feedback in dieser Region wird aufgrund der schwachen Sternwinde durch Supernovae bestimmt, während die Ionization der gesamten Region durch einen einzigen sehr heißen und leuchtkräftigen Wolf-Rayet-Stern dominiert wird. Die niedrige Feedbackrate in metallarmen Sternpopulationen scheint für die Größe und das Überleben von Molekülwolken förderlich zu sein, sodass Sternentstehungsepisoden über einen längeren Zeitraum ablaufen. Solch ausgedehnte Sternentstehung kann dazu führen, dass es eine fortwährende Quelle von ionisierenden Photonen gibt, welche in das zirkumgalaktische Medium durch Löcher oder Kanäle entweichen können, die durch Supernovae erzeugt worden. Diese Studie regt an, dass Sternentstehungsregionen mit langer Geschichte ihre Spuren im umgebenden ISM auch bei niedriger Metallizität hinterlassen werden. Die zukünftigen großräumigen Spektroskopiestudien von weiter entfernten Galaxien mit noch geringeren Metallizitäten können weitere Einsichten in unser derzeitiges Verständnis von massereichen Sternen bringen. KW - massive stars KW - stellar feedback KW - spectroscopy KW - stellar evolution KW - star formation KW - massive Sterne KW - Sternfeedback KW - Spektroskopie KW - Sternentwicklung KW - Sternentstehung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432455 ER - TY - THES A1 - Menski, Antonia Isabell T1 - Europium als strukturelle Sonde zur Analyse neuartiger Materialien T1 - Europium as a structural probe for the analysis of novel materials N2 - Im Rahmen dieser Arbeit wird anhand von neuartigen Materialien das Potential der Europium-Lumineszenz für die strukturelle Analyse dargestellt. Bei diesen Materialien handelt es sich zum einen um Nanopartikel mit Matrizes aus mehreren Metall-Mischoxiden und Dotierungen durch die Sonde Europium und zum anderen um Metallorganische Netzwerke (MOFs), die mit Neodym , Samarium- und Europium-Ionen beladen sind. Die Synthese der aus der Kombination von Metalloxiden enthaltenen Nanopartikel ist unter milden Bedingungen mithilfe von speziell dafür hergestellten Reagenzien erfolgt und hat zu sehr kleinen, amorphen Nanopartikeln geführt. Durch eine nachfolgende Temperaturbehandlung hat sich die Kristallinität erhöht. Damit verbunden haben sich auch die Kristallstruktur sowie die Position des Dotanden Europium verändert. Während die etablierte Methode der Röntgendiffraktometrie einen Blick auf das Kristallgitter als Gesamtes ermöglicht, so trifft die Lumineszenz des Europiums durch die Sichtbarkeit einzelner Stark-Aufspaltungen Aussagen über dessen lokale Symmetrien. Die Symmetrie wird durch Sauerstofffehlstellen verändert, welche die Sauerstoffleitfähigkeit der Nanopartikel beeinflussen. Diese ist für die Anwendung als Katalysatoren in industriellen Prozessen und ebenso als Sensoren und Therapeutika in biologischen Systemen von Bedeutung. Zur ersten katalytischen Charakterisierung werden die Proben mittels Temperatur-programmierter Reduktion untersucht. Des Weiteren werden die Mischoxid-Nanopartikel auch hinsichtlich ihrer Verwendbarkeit als Matrix in Aufkonversionsprozessen untersucht. Die Metallorganischen Netzwerke eignen sich aufgrund ihrer mikroporösen Struktur für Anwendungen in der Speicherung gleichermaßen von Nutzgasen wie auch von Schadstoffen. Ebenfalls ist eine biologische Anwendung denkbar, die insbesondere den Bereich der drug delivery-Reagenzien betrifft. Erfolgt in die mikroporösen Strukturen der Metallorganischen Netzwerke die Einlagerung von Lanthanoid-Ionen, so können diese bei der entsprechenden Kombination als Weißlicht-Emittierer fungieren. Dabei ist neben den Verhältnissen zwischen den Lanthanoid-Ionen auch die genaue Position innerhalb des Netzwerks sowie die Distanz zu anderen Ionen von Interesse. Zur Untersuchung dieser Fragestellungen wird die Umgebungssensitivität der Europium-Lumineszenz ausgenutzt. Die auf diese Weise festgestellte Formiat-Bildung hängt von zahlreichen Parametern ab. Insgesamt stellt sich die im Rahmen dieser Arbeit verwendete Methodik des Einsatzes von Europium als strukturelle Sonde in höchstem Maße vielseitig dar und zeigt seine größte Stärke in der Kombination mit weiteren Methoden der Strukturanalytik. Die auf diese Weise genauestens charakterisierten neuartigen Materialien können nun gezielt und anwendungsfokussiert weiterentwickelt werden. N2 - In this work the potential of the luminescence of europium for structural analysis using novel materials is presented. These materials are on the one hand side nanoparticles made of various metal mixed oxide and doped by europium as a structural probe and on the other hand side the so-called metal organic frameworks (MOFs) loaded with neodymium, samarium and europium ions. The synthesis of the metal mixed oxide nanoparticles is done under mild conditions using reagents that have been specifically produced for this application. It leads to very small and amorphous nanoparticles. The crystallinity is increased by downstreamed temperature treatment. Related to that, the crystal structure and the position of the europium dopant have changed. While the well-established method of X-ray-diffraction offers an insight to the whole crystal lattice, the luminescence of europium gives information about the local symmetry of single europium ions using the visibility of single Stark-splittings. The symmetry is changed by oxygen vacancies which have an influence on the oxygen conductivity of the nanoparticles. This property is important for the application in industrial catalysts as well as in sensors and therapeutic agents in biological systems. For basic catalytical characterisation the samples are examined using the method of temperature-programmed reduction. Furthermore, the metal mixed oxide nanoparticles are also evaluated concerning the usability of the matrix in upconversion-processes. The metal organic frameworks are suitable for the storage of technical gases and pollutants due to their microporous structure. An application in the biological context can be seen especially in the field of drug delivery agents. By intercalation of certain combinations of lanthanide ions in the microporous structure of the metal organic frameworks, white light emitters can be developed. In this application the ratio between the lanthanide ions as well as their exact position within the framework and the distance between the single ions are of interest. For unravelling the regarding open questions, the environment-sensitive luminescence of the europium is used. The determined formate formation depends on several parameters. To sum up, the method of using europium as a structural probe as shown in this work is highly versatile and proves its worth in combination with further methods of structural analysis. Furthermore, an advanced development of the novel materials with focus on specific applications is now well prepared due to precise characterisation. KW - Spektroskopie KW - Nanomaterialien KW - Ceroxid KW - metallorganische Netzwerke KW - spectroscopy KW - nanomaterials KW - cerium oxide KW - metal organic frameworks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427141 ER - TY - THES A1 - Beamish, Alison Leslie T1 - Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation T1 - Hyperspektrale Fernerkundung der räumlichen und zeitlichen Heterogenität niedriger arktischer Vegetation BT - the role of phenology, vegetation colour, and intrinsic ecosystem components BT - die Rolle von Phänologie, Vegetationsfarbe und intrinsischer Ökosystemkomponenten N2 - Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales. N2 - Die arktische Erwärmung beeinflusst Produktivität, Wachstums, Artenzusammensetzung, Phänologie und den Reproduktionserfolg arktischer Vegetation, mit Auswirkungen auf die Ökosystemfunktionen sowie auf den globalen Kohlenstoff- und Energiehaushalt. Feldbasierte Messungen und spektrale Charakterisierungen der räumlichen und zeitlichen Heterogenität arktischer Vegetationsgemeinschaften sind limitiert und die Genauigkeit fernerkundlicher Methoden im Landschaftsmaßstab eingeschränkt. Um diese Forschungslücke zu schließen und aktuelle und zukünftige Satellitenmissionen zu unterstützen, wurden drei zentrale Forschungsfragen entwickelt: 1) Wie unterscheidet sich die spektrale Variabilität des Kronendaches zwischen dominanten Vegetationsgemeinschaften der niederen Arktis und wie verändert sich diese Variabilität zwischen den wichtigsten phänologischen Phasen? 2) Wie hängen Aufnahmen der Vegetationsfarbe des Kronendaches von hoch und niedrig auflösenden Geräten mit phänologischen Veränderungen des photosynthetischen Pigmentgehalts auf Blattebene zusammen? 3) Wie beeinflusst die räumliche Aggregation von Daten mit hoher spektraler Auflösung von der Boden- bis zur Satelliten-Skala die arktischen Vegetationssignale der Tundra und welches Potenzial haben zukünftige hyperspektraler Satellitensysteme für die arktische Vegetationscharakterisierung? Zur Beantwortung dieser Fragen wurde eine detaillierte Datenbank aus feldbasierten Daten erstellt und mit hyperspektralen Luftbildern sowie multispektralen Sentinel-2 und simulierten hyperspektralen EnMAP Satellitendaten verglichen. Die Ergebnisse zeigten, dass die Spätsai-son am besten geeignet ist um dominante Vegetationsgemeinschaften mit Hilfe von hyper-spektralen Daten zu identifizieren. Ebenfalls konnte gezeigt werden, dass die mit handelsüb-lichen Digitalkameras aufgenommene Vegetationsfarbe pigmentgesteuerte Spektralindizes stark beeinflusst und den Verlauf von photosynthetischen Pigmenten nachverfolgen kann. Die räumliche Aggregation hyperspektraler Daten von der Boden- über die Luft- zur Satelli-tenskala wurde durch nicht-photosynthetische Komponenten beeinflusst und die spektralen Reflexionsvermögen der drei Skalen stimmten im roten Spektrum am höchsten und im nahen Infrarotbereich am niedrigsten überein. Die vorliegende Arbeit zeigt, dass die Integration zeitlicher, spektraler und räumlicher Daten notwendig ist, um Komplexität und Heterogenität arktischer Vegetationsreaktionen in Reaktion auf klimatische Veränderungen zu überwachen. KW - hyperspectral remote sensing KW - Arctic tundra KW - vegetation KW - imaging spectroscopy KW - hyperspektral Fernerkundung KW - arktische Tundra KW - Vegetation KW - Spektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425922 ER -