TY - THES A1 - Rothe, Viktoria T1 - Das Yamabe-Problem auf global-hyperbolischen Lorentz-Mannigfaltigkeiten N2 - Im Jahre 1960 behauptete Yamabe folgende Aussage bewiesen zu haben: Auf jeder kompakten Riemannschen Mannigfaltigkeit (M,g) der Dimension n ≥ 3 existiert eine zu g konform äquivalente Metrik mit konstanter Skalarkrümmung. Diese Aussage ist äquivalent zur Existenz einer Lösung einer bestimmten semilinearen elliptischen Differentialgleichung, der Yamabe-Gleichung. 1968 fand Trudinger einen Fehler in seinem Beweis und infolgedessen beschäftigten sich viele Mathematiker mit diesem nach Yamabe benannten Yamabe-Problem. In den 80er Jahren konnte durch die Arbeiten von Trudinger, Aubin und Schoen gezeigt werden, dass diese Aussage tatsächlich zutrifft. Dadurch ergeben sich viele Vorteile, z.B. kann beim Analysieren von konform invarianten partiellen Differentialgleichungen auf kompakten Riemannschen Mannigfaltigkeiten die Skalarkrümmung als konstant vorausgesetzt werden. Es stellt sich nun die Frage, ob die entsprechende Aussage auch auf Lorentz-Mannigfaltigkeiten gilt. Das Lorentz'sche Yamabe Problem lautet somit: Existiert zu einer gegebenen räumlich kompakten global-hyperbolischen Lorentz-Mannigfaltigkeit (M,g) eine zu g konform äquivalente Metrik mit konstanter Skalarkrümmung? Das Ziel dieser Arbeit ist es, dieses Problem zu untersuchen. Bei der sich aus dieser Fragestellung ergebenden Yamabe-Gleichung handelt es sich um eine semilineare Wellengleichung, deren Lösung eine positive glatte Funktion ist und aus der sich der konforme Faktor ergibt. Um die für die Behandlung des Yamabe-Problems benötigten Grundlagen so allgemein wie möglich zu halten, wird im ersten Teil dieser Arbeit die lokale Existenztheorie für beliebige semilineare Wellengleichungen für Schnitte auf Vektorbündeln im Rahmen eines Cauchy-Problems entwickelt. Hierzu wird der Umkehrsatz für Banachräume angewendet, um mithilfe von bereits existierenden Existenzergebnissen zu linearen Wellengleichungen, Existenzaussagen zu semilinearen Wellengleichungen machen zu können. Es wird bewiesen, dass, falls die Nichtlinearität bestimmte Bedingungen erfüllt, eine fast zeitglobale Lösung des Cauchy-Problems für kleine Anfangsdaten sowie eine zeitlokale Lösung für beliebige Anfangsdaten existiert. Der zweite Teil der Arbeit befasst sich mit der Yamabe-Gleichung auf global-hyperbolischen Lorentz-Mannigfaltigkeiten. Zuerst wird gezeigt, dass die Nichtlinearität der Yamabe-Gleichung die geforderten Bedingungen aus dem ersten Teil erfüllt, so dass, falls die Skalarkrümmung der gegebenen Metrik nahe an einer Konstanten liegt, kleine Anfangsdaten existieren, so dass die Yamabe-Gleichung eine fast zeitglobale Lösung besitzt. Mithilfe von Energieabschätzungen wird anschließend für 4-dimensionale global-hyperbolische Lorentz-Mannigfaltigkeiten gezeigt, dass unter der Annahme, dass die konstante Skalarkrümmung der konform äquivalenten Metrik nichtpositiv ist, eine zeitglobale Lösung der Yamabe-Gleichung existiert, die allerdings nicht notwendigerweise positiv ist. Außerdem wird gezeigt, dass, falls die H2-Norm der Skalarkrümmung bezüglich der gegebenen Metrik auf einem kompakten Zeitintervall auf eine bestimmte Weise beschränkt ist, die Lösung positiv auf diesem Zeitintervall ist. Hierbei wird ebenfalls angenommen, dass die konstante Skalarkrümmung der konform äquivalenten Metrik nichtpositiv ist. Falls zusätzlich hierzu gilt, dass die Skalarkrümmung bezüglich der gegebenen Metrik negativ ist und die Metrik gewisse Bedingungen erfüllt, dann ist die Lösung für alle Zeiten in einem kompakten Zeitintervall positiv, auf dem der Gradient der Skalarkrümmung auf eine bestimmte Weise beschränkt ist. In beiden Fällen folgt unter den angeführten Bedingungen die Existenz einer zeitglobalen positiven Lösung, falls M = I x Σ für ein beschränktes offenes Intervall I ist. Zum Schluss wird für M = R x Σ ein Beispiel für die Nichtexistenz einer globalen positiven Lösung angeführt. N2 - Yamabe claimed in 1960 that he had proven the following theorem: Any Riemannian metric g on a compact smooth manifold M of dimension n ≥ 3 is conformal to a metric with constant scalar curvature. An equivalent formulation of this theorem is the existence of a solution to a certain semilinear elliptic differential equation, the so-called Yamabe equation. In 1968 Trudinger found a mistake in Yamabe's paper and consequently many mathematicians dealt with this so-called Yamabe problem. In the 80s Trudinger, Aubin and Shoen were able to fix the mistake and prove that Yamabe's theorem was indeed true. This has many advantages, for example when analyzing a conformally invariant partial differential equation on compact Riemannian manifolds one can assume that the scalar curvature is constant. The question now arises whether the analogous statement on Lorentzian manifolds also applies. The Lorentzian Yamabe Problem can be stated as follows: Given a spatially compact globally hyperbolic Lorentzian manifold (M, g), does there exist a metric conformal to g with constant scalar curvature? The goal of this dissertation is to examine this problem. The Yamabe equation which arises from this question is a semilinear wave equation which must have a positive smooth solution. In the first part of this dissertation the local theory of existence of general semilinear wave equations for sections on vector bundles was developed. For this the inverse function theorem and already existing statements about the existence of solutions to linear wave equation on Lorentzian manifolds were used. It will be proven that there exists an almost global solution to the corresponding Cauchy problem for small initial data as well as a time local solution for arbitrary initial data if the nonlinearity fulfills certain conditions. The second part of the dissertation deals with the Yamabe equation on globally hyperbolic Lorentzian manifolds. First by using the results of the first part it will be proven that there exist initial data such that the Yamabe equation has an almost time global solution if the scalar curvature of the given metric is sufficiently close to a constant. Afterwards by using energy estimates it will be shown in the case of 4-dimensional Lorentzian manifolds that under the assumption that the constant scalar curvature of the conformal metric is non-positive there exists a global smooth solution to the Yamabe equation which is not necessarily positive. But it will be proven that the solution is positive on a compact time interval if the H2-Norm of the scalar curvature of the given metric is bounded on this time interval in a certain way or if the scalar curvature is negative and the gradient of the scalar curvature is bounded in a specific way. In both cases the existence of a global positive smooth solution follows, if the Lorentzian manifold has the form M = I x Σ where I is an open bounded time interval and Σ is a Riemannian manifold. At the end an example for the nonexistence of a global positive solution in the case of M= R x Σ will be presented. T2 - The Yamabe problem on globally hyperbolic Lorentzian manifolds KW - Yamabe-Problem KW - Yamabe problem KW - wave equation KW - globally hyperbolic KW - global-hyperbolisch KW - Wellengleichung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-486012 ER - TY - THES A1 - Lindblad Petersen, Oliver T1 - The Cauchy problem for the linearised Einstein equation and the Goursat problem for wave equations T1 - Das Cauchyproblem für die linearisierte Einsteingleichung und das Goursatproblem für Wellengleichungen N2 - In this thesis, we study two initial value problems arising in general relativity. The first is the Cauchy problem for the linearised Einstein equation on general globally hyperbolic spacetimes, with smooth and distributional initial data. We extend well-known results by showing that given a solution to the linearised constraint equations of arbitrary real Sobolev regularity, there is a globally defined solution, which is unique up to addition of gauge solutions. Two solutions are considered equivalent if they differ by a gauge solution. Our main result is that the equivalence class of solutions depends continuously on the corre- sponding equivalence class of initial data. We also solve the linearised constraint equations in certain cases and show that there exist arbitrarily irregular (non-gauge) solutions to the linearised Einstein equation on Minkowski spacetime and Kasner spacetime. In the second part, we study the Goursat problem (the characteristic Cauchy problem) for wave equations. We specify initial data on a smooth compact Cauchy horizon, which is a lightlike hypersurface. This problem has not been studied much, since it is an initial value problem on a non-globally hyperbolic spacetime. Our main result is that given a smooth function on a non-empty, smooth, compact, totally geodesic and non-degenerate Cauchy horizon and a so called admissible linear wave equation, there exists a unique solution that is defined on the globally hyperbolic region and restricts to the given function on the Cauchy horizon. Moreover, the solution depends continuously on the initial data. A linear wave equation is called admissible if the first order part satisfies a certain condition on the Cauchy horizon, for example if it vanishes. Interestingly, both existence of solution and uniqueness are false for general wave equations, as examples show. If we drop the non-degeneracy assumption, examples show that existence of solution fails even for the simplest wave equation. The proof requires precise energy estimates for the wave equation close to the Cauchy horizon. In case the Ricci curvature vanishes on the Cauchy horizon, we show that the energy estimates are strong enough to prove local existence and uniqueness for a class of non-linear wave equations. Our results apply in particular to the Taub-NUT spacetime and the Misner spacetime. It has recently been shown that compact Cauchy horizons in spacetimes satisfying the null energy condition are necessarily smooth and totally geodesic. Our results therefore apply if the spacetime satisfies the null energy condition and the Cauchy horizon is compact and non-degenerate. N2 - In der vorliegenden Arbeit werden zwei Anfangswertsprobleme aus der Allgemeinen Relativitätstheorie betrachtet. Das erste ist das Cauchyproblem für die linearisierte Einsteingleichung auf allgemeinen global hyperbolischen Raumzeiten mit glatten und distributionellen Anfangsdaten. Wir verallgemeinern bekannte Ergebnisse, indem wir zeigen, dass für jede gegebene Lösung der linearisierten Constraintgleichungen mit reeller Sobolevregularität eine global definierte Lösung existiert, die eindeutig ist bis auf Addition von Eichlösungen. Zwei Lösungen sind äquivalent falls sie sich durch eine Eichlösung unterscheiden. Unser Hauptergebnis ist, dass die äquivalenzklasse der Lösungen stetig von der zugehörigen Äquivalenzklasse der Anfangsdaten abhängt. Wir lösen auch die linearisierten Constraintgleichungen in Spezialfällen und zeigen, dass beliebig irreguläre (nicht Eich-) Lösungen der linearisierten Einsteingleichungen auf der Minkowski-Raumzeit und der Kasner-Raumzeit existieren. Im zweiten Teil betrachten wir das Goursatproblem (das charakteristische Cauchyproblem) für Wellengleichungen. Wir geben Anfangsdaten auf einem Cauchyhorizont vor, der eine lichtartige Hyperfläche ist. Dieses Problem wurde bisher noch nicht viel betrachtet, weil es ein Anfangswertproblem auf einer nicht global hyperbolischen Raumzeit ist. Unser Hauptergebnis ist: Gegeben eine glatte Funktion auf einem nicht-leeren glatten, kompakten, totalgeodätischen und nicht-degenerierten Cauchyhorizont und eine so genannte zulässige Wellengleichung, dann existiert eine eindeutige Lösung, die auf dem global hyperbolischen Gebiet definiert ist und deren Einschränkung auf dem Cauchyhorizont die gegebene Funktion ist. Die Lösung hängt stetig von den Anfangsdaten ab. Eine Wellengleichung heißt zulässig, falls der Teil erster Ordnung eine gewisse Bedingung am Cauchyhorizont erfüllt, zum Beispiel falls er gleich Null ist. Interessant ist, dass Existenz der Lösung und Eindeutigkeit falsch sind für allgemeine Wellengleichungen, wie Beispiele zeigen. Falls wir die Bedingung der Nichtdegeneriertheit weglassen, ist Existenz von Lösungen falsch sogar für die einfachste Wellengleichung. Der Beweis benötigt genaue Energieabschätzungen für die Wellengleichung nahe am Cauchyhorizont. Im Fall, dass die Ricci-Krümmung am Cauchyhorizont verschwindet, zeigen wir, dass die Energieabschätzungen stark genug sind, um lokale Existenz und Eindeutigkeit für eine Klasse von nicht-linearen Wellengleichungen zu zeigen. Unser Ergebnis ist zum Beispiel auf der Taub-NUT-Raumzeit oder der Misner-Raumzeit gültig. Es wurde vor kurzem gezeigt, dass kompakte Cauchyhorizonte in Raumzeiten, die die Nullenergiebedingung erfüllen, notwendigerweise glatt und totalgeodätisch sind. Unsere Ergebnisse sind deshalb auf Raumzeiten gültig, die die Nullenergiebedingung erfüllen, wenn der Cauchyhorizont kompakt und nicht-degeneriert ist. KW - Cauchy horizon KW - the Goursat problem KW - the characteristic Cauchy problem KW - wave equation KW - the Cauchy problem KW - gravitational wave KW - the linearised Einstein equation KW - Cauchyhorizont KW - das Goursatproblem KW - das charakteristische Cauchyproblem KW - Wellengleichung KW - das Cauchyproblem KW - Gravitationswelle KW - die linearisierte Einsteingleichung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410216 ER - TY - THES A1 - Chirvasa, Mihaela T1 - Finite difference methods for 1st Order in time, 2nd order in space, hyperbolic systems used in numerical relativity T1 - Finite Differenzen für hyperbolische Gleichungen erster Ordnung in der Zeit, zweiter Ordnung im Raum in der numerischen Relativitätstheorie N2 - This thesis is concerned with the development of numerical methods using finite difference techniques for the discretization of initial value problems (IVPs) and initial boundary value problems (IBVPs) of certain hyperbolic systems which are first order in time and second order in space. This type of system appears in some formulations of Einstein equations, such as ADM, BSSN, NOR, and the generalized harmonic formulation. For IVP, the stability method proposed in [14] is extended from second and fourth order centered schemes, to 2n-order accuracy, including also the case when some first order derivatives are approximated with off-centered finite difference operators (FDO) and dissipation is added to the right-hand sides of the equations. For the model problem of the wave equation, special attention is paid to the analysis of Courant limits and numerical speeds. Although off-centered FDOs have larger truncation errors than centered FDOs, it is shown that in certain situations, off-centering by just one point can be beneficial for the overall accuracy of the numerical scheme. The wave equation is also analyzed in respect to its initial boundary value problem. All three types of boundaries - outflow, inflow and completely inflow that can appear in this case, are investigated. Using the ghost-point method, 2n-accurate (n = 1, 4) numerical prescriptions are prescribed for each type of boundary. The inflow boundary is also approached using the SAT-SBP method. In the end of the thesis, a 1-D variant of BSSN formulation is derived and some of its IBVPs are considered. The boundary procedures, based on the ghost-point method, are intended to preserve the interior 2n-accuracy. Numerical tests show that this is the case if sufficient dissipation is added to the rhs of the equations. N2 - Diese Doktorarbeit beschäftigt sich mit der Entwicklung numerischer Verfahren für die Diskretisierung des Anfangswertproblems und des Anfangs-Randwertproblems unter Einsatz von finite-Differenzen-Techniken für bestimmte hyperbolischer Systeme erster Ordnung in der Zeit und zweiter Ordnung im Raum. Diese Art von Systemen erscheinen in einigen Formulierungen der Einstein'schen-Feldgleichungen, wie zB. den ADM, BSSN oder NOR Formulierungen, oder der sogenanten verallgemeinerten harmonischen Darstellung. Im Hinblick auf das Anfangswertproblem untersuche ich zunächst tiefgehend die mathematischen Eigenschaften von finite-Differenzen-Operatoren (FDO) erster und zweiter Ordnung mit 2n-facher Genaugigkeit. Anschließend erweitere ich eine in der Literatur beschriebene Methode zur Stabilitätsanalyse für Systeme mit zentrierten FDOs in zweiter und vierter Genauigkeitsordung auf Systeme mit gemischten zentrierten und nicht zentrierten Ableitungsoperatoren 2n-facher Genauigkeit, eingeschlossen zusätzlicher Dämpfungsterme, wie sie bei numerischen Simulationen der allgemeinen Relativitätstheorie üblich sind. Bei der Untersuchung der einfachen Wellengleichung als Fallbeispiel wird besonderes Augenmerk auf die Analyse der Courant-Grenzen und numerischen Geschwindigkeiten gelegt. Obwohl unzentrierte, diskrete Ableitungsoperatoren größere Diskretisierungs-Fehler besitzen als zentrierte Ableitungsoperatoren, wird gezeigt, daß man in bestimmten Situationen eine Dezentrierung des numerischen Moleküls von nur einem Punkt bezüglich des zentrierten FDO eine höhere Genauigkeit des numerischen Systems erzielen kann. Die Wellen-Gleichung in einer Dimension wurde ebenfalls im Hinblick auf das Anfangswertproblem untersucht. In Abhängigkeit des Wertes des sogenannten Shift-Vektors, müssen entweder zwei (vollständig eingehende Welle), eine (eingehende Welle) oder keine Randbedingung (ausgehende Welle) definiert werden. In dieser Arbeit wurden alle drei Fälle mit Hilfe der 'Ghost-point-methode' numerisch simuliert und untersucht, und zwar auf eine Weise, daß alle diese Algorithmen stabil sind und eine 2n-Genauigkeit besitzen. In der 'ghost-point-methode' werden die Evolutionsgleichungen bis zum letzen Punkt im Gitter diskretisiert unter Verwendung von zentrierten FDOs und die zusätzlichen Punkte die am Rand benötigt werden ('Ghost-points') werden unter Benutzung von Randwertbedingungen und Extrapolationen abgeschätzt. Für den Zufluß-Randwert wurde zusätzlich noch eine andere Implementierung entwickelt, welche auf der sogenannten SBP-SAT (Summation by parts-simulatanous approximation term) basiert. In dieser Methode werden die diskreten Ableitungen durch Operatoren angenähert, welche die 'Summation-by-parts' Regeln erfüllen. Die Randwertbedingungen selber werden in zusätzlichen Termen integriert, welche zu den Evolutionsgleichnungen der Punkte nahe des Randes hinzuaddiert werden und zwar auf eine Weise, daß die 'summation-by-parts' Eigenschaften erhalten bleiben. Am Ende dieser Arbeit wurde noch eine eindimensionale (kugelsymmetrische) Version der BSSN Formulierung abgeleitet und einige physikalisch relevanten Anfangs-Randwertprobleme werden diskutiert. Die Randwert-Algorithmen, welche für diesen Fall ausgearbeitet wurden, basieren auf der 'Ghost-point-Methode' and erfüllen die innere 2n-Genauigkeit solange genügend Reibung in den Gleichungen zugefügt wird. KW - Finite Differenzen KW - Wellengleichung KW - numerischen Relativitätstheorie KW - finite differences KW - wave equation KW - numerical relativity Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-42135 ER -