TY - THES A1 - Klisch, Anja T1 - Ableitung von Blattflächenindex und Bedeckungsgrad aus Fernerkundungsdaten für das Erosionsmodell EROSION 3D N2 - In den letzten Jahren wurden relativ komplexe Erosionsmodelle entwickelt, deren Teilprozesse immer mehr auf physikalisch begründeten Ansätzen beruhen. Damit verbunden ist eine höhere Anzahl aktueller Eingangsparameter, deren Bestimmung im Feld arbeits- und kostenaufwendig ist. Zudem werden die Parameter punktuell, also an bestimmten Stellen und nicht flächenhaft wie bei der Fernerkundung, erfasst. Im Rahmen dieser Arbeit wird gezeigt, wie Satellitendaten als relativ kostengünstige Ergänzung oder Alternative zur konventionellen Parametererhebung genutzt werden können. Dazu werden beispielhaft der Blattflächenindex (LAI) und der Bedeckungsgrad für das physikalisch begründete Erosionsmodell EROSION 3D abgeleitet. Im Mittelpunkt des Interesses steht dabei das Aufzeigen von existierenden Methoden, die die Basis für eine operationelle Bereitstellung solcher Größen nicht nur für Erosions- sondern allgemein für Prozessmodelle darstellen. Als Untersuchungsgebiet dient das primär landwirtschaftlich genutzte Einzugsgebiet des Mehltheuer Baches, das sich im Sächsischen Lößgefilde befindet und für das Simulationsrechnungen mit konventionell erhobenen Eingangsparametern für 29 Niederschlagsereignisse im Jahr 1999 vorliegen [MICHAEL et al. 2000]. Die Fernerkundungsdatengrundlage bilden Landsat-5-TM-Daten vom 13.03.1999, 30.04.1999 und 19.07.1999. Da die Vegetationsparameter für alle Niederschlagsereignisse vorliegen sollen, werden sie basierend auf der Entwicklung des LAI zeitlich interpoliert. Dazu erfolgt zunächst die Ableitung des LAI für alle vorhandenen Fruchtarten nach den semi-empirischen Modellen von CLEVERS [1986] und BARET & GUYOT [1991] mit aus der Literatur entnommenen Koeffizienten. Des Weiteren wird eine Methode untersucht, nach der die Koeffizienten für das Clevers-Modell aus den TM-Daten und einem vereinfachten Wachstumsmodell bestimmt werden. Der Bedeckungsgrad wird nach ROSS [1981] aus dem LAI ermittelt. Die zeitliche Interpolation des LAI wird durch die schlagbezogene Anpassung eines vereinfachten Wachstumsmodells umgesetzt, das dem hydrologischen Modell SWIM [KRYSANOVA et al. 1999] entstammt und in das durchschnittliche Tagestemperaturen eingehen. Mit den genannten Methoden bleiben abgestorbene Pflanzenteile unberücksichtigt. Im Vergleich zur konventionellen terrestrischen Parametererhebung ermöglichen sie eine differenziertere Abbildung räumlicher Variabilitäten und des zeitlichen Verlaufes der Vegetationsparameter. Die Simulationsrechnungen werden sowohl mit den direkten Bedeckungsgraden aus den TM-Daten (pixelbezogen) als auch mit den zeitlich interpolierten Bedeckungsgraden für alle Ereignisse (schlagbezogen) durchgeführt. Bei beiden Vorgehensweisen wird im Vergleich zur bisherigen Abschätzung eine Verbesserung der räumlichen Verteilung der Parameter und somit eine räumliche Umverteilung von Erosions- und Depositionsflächen erreicht. Für die im Untersuchungsgebiet vorliegende räumliche Heterogenität (z. B. Schlaggröße) bieten Landsat-TM-Daten eine ausreichend genaue räumliche Auflösung. Damit wird nachgewiesen, dass die satellitengestützte Fernerkundung im Rahmen dieser Untersuchungen sinnvoll einsetzbar ist. Für eine operationelle Bereitstellung der Parameter mit einem vertretbaren Aufwand ist es erforderlich, die Methoden weiter zu validieren und möglichst weitestgehend zu automatisieren. N2 - Soil erosion models become increasingly more complex and contain physically based components, resulting in changing requirements for their input parameters. The spatial and temporal dynamics of erosions forcing parameters thus produce high requirements on data availability (costs and manpower). Due to this fact, the use of complex erosion models for extensive regions is strongly limited by the high in-situ expense. Moreover, conventional measurement procedures provide parameters at certain points, while remote sensing is a two-dimensional retrieval method. This thesis demonstrates, how satellite data can be used as a cost-effective supplementation or alternative to conventional measurement procedures. Leaf area index (LAI) and soil cover percentage are examplarily derived for the EROSION 3D physically based soil erosion model. The main objective of this study is to summarise existing retrieval methods in order to operationally provide such paramaters for soil erosion models or for process models in general. The methods are applied to a catchment in the loess region in Saxony (Germany), that predominantly is agriculturally used. For comparison, simulations based on conventionally estimated parameters for 29 rainstorm events are available [MICHAEL et al. 2000]. The remote sensing parameters are derived from Landsat 5 TM data on the following dates: 13.03.1999, 30.04.1999, 19.07.1999. To get temporally continuous data for all events, they are interpolated between the acquisition dates based on the LAI development. Therefore, LAI is firstly calculated for all occurring crops by means of the semi-empirical models of CLEVERS [1986] and BARET & GUYOT [1991]. The coefficients appropriated to these models are taken from literature. Furthermore, a method is investigated that enables coefficient estimation for the Clevers model from Landsat data combined with a simplified growth model. Next, soil cover percentage is derived from LAI after ROSS [1981]. The LAI interpolation is performed by the simplified crop growth model from the SWIM hydrological model [Krysanova et al. 1999]. It has to be mentioned, that plant residue remains unconsidered by the used methods. In comparison to conventional measurement procedures, these methods supply a differentiated mapping of the spatial variability and temporal behaviour regarding the vegetation parameters. The simulations with EROSION 3D are carried out for the remotely sensed soil cover percentages, that are retrieved in two ways. Soil cover is directly derived from the remote sensing data for each pixel at the acquisition dates as well as estimated by means of the interpolation for each field on all rainstorm events. In comparison to conventionally determined soil cover, both methods provide an improved spatial allocation of this parameter and thus, a spatial reallocation of erosion and deposition areas. The used Landsat Data provide an adequate spatial resolution suitable for the spatial heterogeneity given in the test area (e. g. field size). These results show that satellite based remote sensing can be reasonably used within the scope of these investigations. In the future, operational retrieval of such remotely sensed parameters necessitates the validation of the proposed methods and in general the automation of involved sub-processes to the greatest possible extent KW - Fernerkundung KW - Blattflächenindex KW - Bedeckungsgrad KW - Bodenerosion KW - EROSION 3D KW - remote sensing KW - leaf area index KW - soil cover percentage KW - soil erosion KW - EROSION 3D Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001455 ER - TY - THES A1 - Calitri, Francesca T1 - Co-evolution of erosion rates, weathering and profile development in soil landscapes of hummocky ground moraines N2 - Soil is today considered a non-renewable resource on societal time scale, as the rate of soil loss is higher than the one of soil formation. Soil formation is complex, can take several thousands of years and is influenced by a variety of factors, one of them is time. Oftentimes, there is the assumption of constant and progressive conditions for soil and/or profile development (i.e., steady-state). In reality, for most of the soils, their (co-)evolution leads to a complex and irregular soil development in time and space characterised by “progressive” and “regressive” phases. Lateral transport of soil material (i.e., soil erosion) is one of the principal processes shaping the land surface and soil profile during “regressive” phases and one of the major environmental problems the world faces. Anthropogenic activities like agriculture can exacerbate soil erosion. Thus, it is of vital importance to distinguish short-term soil redistribution rates (i.e., within decades) influenced by human activities differ from long-term natural rates. To do so, soil erosion (and denudation) rates can be determined by using a set of isotope methods that cover different time scales at landscape level. With the aim to unravel the co-evolution of weathering, soil profile development and lateral redistribution on a landscape level, we used Pluthonium-239+240 (239+240Pu), Beryllium-10 (10Be, in situ and meteoric) and Radiocarbon (14C) to calculate short- and long-term erosion rates in two settings, i.e., a natural and an anthropogenic environment in the hummocky ground moraine landscape of the Uckermark, North-eastern Germany. The main research questions were: 1. How do long-term and short-term rates of soil redistributing processes differ? 2. Are rates calculated from in situ 10Be comparable to those of using meteoric 10Be? 3. How do soil redistribution rates (short- and long-term) in an agricultural and in a natural landscape compare to each other? 4. Are the soil patterns observed in northern Germany purely a result of past events (natural and/or anthropogenic) or are they imbedded in ongoing processes? Erosion and deposition are reflected in a catena of soil profiles with no or almost no erosion on flat positions (hilltop), strong erosion on the mid-slope and accumulation of soil material at the toeslope position. These three characteristic process domains were chosen within the CarboZALF-D experimental site, characterised by intense anthropogenic activities. Likewise, a hydrosequence in an ancient forest was chosen for this study and being regarded as a catena strongly influenced by natural soil transport. The following main results were obtained using the above-mentioned range of isotope methods available to measure soil redistribution rates depending on the time scale needed (e.g., 239+240Pu, 10Be, 14C): 1. Short-term erosion rates are one order of magnitude higher than long-term rates in agricultural settings. 2. Both meteoric and in situ 10Be are suitable soil tracers to measure the long-term soil redistribution rates giving similar results in an anthropogenic environment for different landscape positions (e.g., hilltop, mid-slope, toeslope) 3. Short-term rates were extremely low/negligible in a natural landscape and very high in an agricultural landscape – -0.01 t ha-1 yr-1 (average value) and -25 t ha-1 yr-1 respectively. On the contrary, long-term rates in the forested landscape are comparable to those calculated in the agricultural area investigated with average values of -1.00 t ha-1 yr-1 and -0.79 t ha-1 yr-1. 4. Soil patterns observed in the forest might be due to human impact and activities started after the first settlements in the region, earlier than previously postulated, between 4.5 and 6.8 kyr BP, and not a result of recent soil erosion. 5. Furthermore, long-term soil redistribution rates are similar independently from the settings, meaning past natural soil mass redistribution processes still overshadow the present anthropogenic erosion processes. Overall, this study could make important contributions to the deciphering of the co-evolution of weathering, soil profile development and lateral redistribution in North-eastern Germany. The multi-methodological approach used can be challenged by the application in a wider range of landscapes and geographic regions. N2 - Boden wird heute im gesellschaftlichen Zeitmaßstab als nicht erneuerbare Ressource angesehen, da die Geschwindigkeit des Bodenverlusts höher ist als die der Bodenbildung. Bodenbildung ist komplex, kann mehrere tausend Jahre dauern und wird von einer Vielzahl von Faktoren beeinflusst, unter anderem Zeit. Häufig wird von konstanten und fortschreitenden Bedingungen für die Boden- und/oder Profilentwicklung (d. h. «Steady-State») ausgegangen. Tatsächlich führt ihre (Co-)Evolution bei den meisten Böden zu einer komplexen und zeitlich und räumlich unregelmäßigen Bodenentwicklung, die durch „progressive“ und „regressive“ Phasen gekennzeichnet ist. Der laterale Transport von Bodenmaterial (d. h. Bodenerosion) ist einer der Hauptprozesse, der die Landoberfläche und das Bodenprofil während „rückläufiger“ Phasen bilden, und eines der größten Umweltprobleme, mit denen die Welt konfrontiert ist. Anthropogene Aktivitäten wie die Landwirtschaft können die Bodenerosion verstärken. Daher ist es von entscheidender Bedeutung, kurzfristige Bodenumverteilungsraten (d. h. innerhalb von Jahrzehnten), die durch menschliche Aktivitäten beeinflusst werden, von langfristigen natürlichen Raten zu unterscheiden. Zu diesem Zweck können Bodenerosions- (und Denudations-) Raten mithilfe einer Reihe von Isotopenmethoden bestimmt werden, die verschiedene Zeitskalen auf Landschaftsebene abdecken. Mit dem Ziel, die Co-Evolution von Verwitterung, Bodenprofilentwicklung und lateraler Umverteilung auf Landschaftsebene aufzuklären, verwendeten wir Plutonium-239+240 (239+240Pu), Beryllium-10 (10Be, in situ und meteorisch) und Radiokohlenstoff (14C) zur Berechnung kurz- und langfristiger Erosionsraten in zwei Umgebungen: einer natürlichen und einer anthropogenen Umgebung in der hügeligen Grundmoränenlandschaft der Uckermark in Nordostdeutschland. Die wichtigsten Forschungsfragen waren: 1. Wie unterscheiden sich langfristige und kurzfristige Raten von Bodenumverteilungsprozessen? 2. Sind die aus in situ 10Be berechneten Raten vergleichbar mit denen der Verwendung von meteorischem 10Be? 3. Wie verhalten sich Bodenumlagerungsraten (kurz- und langfristig) in einer Agrar- und in einer Naturlandschaft zueinander? 4. Sind die in Norddeutschland beobachteten Bodenmuster reine Folge vergangener Ereignisse (natürlich und/oder anthropogen) oder sind sie in laufende Prozesse eingebettet? Erosion und Ablagerung spiegeln sich in einer Kette von Bodenprofilen mit keiner oder fast keiner Erosion auf flachen Positionen (Hügelkuppe), starker Erosion auf der Hangmitte und Anhäufung von Bodenmaterial am Hangfuss wider. Diese drei charakteristischen Prozessdomänen wurden innerhalb des CarboZALF-D-Versuchsstandorts ausgewählt, der durch intensive anthropogene Aktivitäten gekennzeichnet ist. Ebenso wurde für diese Studie eine Hydrosequenz in einem alten Wald ausgewählt, die als stark vom natürlichen Bodentransport beeinflusste Catena angesehen wird. Die folgenden Hauptergebnisse wurden unter Verwendung der oben erwähnten Reihe von Isotopenmethoden erzielt, die zur Messung der Bodenumverteilungsraten in Abhängigkeit von der erforderlichen Zeitskala (z. B. 239+240Pu, 10Be, 14C) verfügbar sind: 1. Im landwirtschaftlichen Umfeld sind kurzfristige Erosionsraten eine Größenordnung höher als langfristige Raten. 2. Sowohl meteorisches als auch in situ 10Be sind geeignete Bodenindikatoren, um die langfristigen Bodenumverteilungsraten zu messen. Sie liefern ähnliche Ergebnisse in einer anthropogenen Umgebung für verschiedene Landschaftspositionen (z. B. Hügelkuppe, Mittelhang, Hangfuss). 3. Die Kurzzeitraten waren in einer Naturlandschaft extrem niedrig/vernachlässigbar und in einer Agrarlandschaft sehr hoch – -0,01 t ha-1 Jahr-1 (Durchschnittswert) bzw. -25 t ha-1 Jahr- 1. Im Gegensatz dazu sind die langjährigen Belastungen in der Waldlandschaft vergleichbar mit den berechneten in der untersuchten landwirtschaftlichen Fläche mit Durchschnittswerten von -1,00 t ha-1 Jahr-1 und -0,79 t ha-1 Jahr-1. 4. Die im Wald beobachteten Bodenmuster könnten auf menschliche Einflüsse und Aktivitäten zurückzuführen sein, die nach den ersten Siedlungen in der Region begannen, und nicht auf die jüngste Bodenerosion. Diese Aktivitäten könnten früher als zuvor angenommen, zwischen 2’500 und 4’800 Jahren vor Christus, erfolgt sein. 5. Darüber hinaus sind die langfristigen Bodenumverteilungsraten unabhängig vom Umfeld ähnlich, was bedeutet, dass vergangene natürliche Bodenmassenumverteilungsprozesse immer noch die gegenwärtigen anthropogenen Erosionsprozesse überschatten. Insgesamt konnte diese Studie wichtige Beiträge zur Entschlüsselung der Co-Evolution von Verwitterung, Bodenprofilentwicklung und lateraler Umverteilung in Nordostdeutschland leisten. Der verwendete multimethodische Ansatz kann durch die Anwendung in einem breiteren Spektrum von Landschaften und geografischen Regionen herausgefordert werden. T2 - Co-Evolution von Erosionsraten, Verwitterung und Profilentwicklung in Bodenlandschaften hügeliger Grundmoränen KW - soil erosion KW - 239+240Plutonium KW - 10Be KW - Agricultural soils KW - Forest KW - Bodenerosion KW - 239+240Plutonium KW - 10Be KW - Landwirtschaftlicher Böden KW - Wald Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-601387 ER -