TY - JOUR A1 - Campbell, Kevin L. A1 - Hofreiter, Michael T1 - Resurrecting phenotypes from ancient DNA sequences: promises and perspectives JF - Canadian journal of zoology = Revue canadienne de zoologie N2 - Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller's sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these "living" processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology. KW - paleophysiology KW - ancient DNA KW - extinct species KW - adaptation KW - protein structure Y1 - 2015 U6 - https://doi.org/10.1139/cjz-2014-0337 SN - 0008-4301 SN - 1480-3283 VL - 93 IS - 9 SP - 701 EP - 710 PB - NRC Research Press CY - Ottawa ER - TY - GEN A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 965 KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438920 SN - 1866-8372 IS - 965 SP - 1510 EP - 1522 ER - TY - JOUR A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 JF - Molecular ecology N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2015 U6 - https://doi.org/10.1111/mec.13121 SN - 0962-1083 SN - 1365-294X VL - 24 IS - 7 SP - 1510 EP - 1522 PB - Wiley-Blackwell CY - Hoboken ER -