TY - JOUR A1 - Abdissa, Negera A1 - Heydenreich, Matthias A1 - Midiwo, Jacob O. A1 - Ndakala, Albert A1 - Majer, Zsuzsanna A1 - Neumann, Beate A1 - Stammler, Hans-Georg A1 - Sewald, Norbert A1 - Yenesew, Abiy T1 - A xanthone and a phenylanthraquinone from the roots of Bulbine frutescens, and the revision of six seco-anthraquinones into xanthones JF - Phytochemistry letters N2 - Phytochemical investigation of the dichloromethane/methanol (1:1) extract of the roots of Bulbine frutescens led to the isolation of a new xanthone, 8-hydroxy-6-methylxanthone-1-carboxylic acid (1) and a new phenylanthraquinone, 6',8-O-dimethylknipholone (2) along with six known compounds. The structures were elucidated on the basis of NMR and MS spectral data analyses. The structure of compound 1 was confirmed through X-ray crystallography which was then used as a reference to propose the revision of the structures of six seco-anthraquinones into xanthones. The isolated compounds were evaluated for cytotoxicity against human cervix carcinoma KB-3-1 cells with the phenylanthraquinone knipholone being the most active (IC50 = 0.43 mu M). Two semi-synthetic knipholone derivatives, knipholone Mannich base and knipholone-1,3-oxazine, were prepared and tested for cytotoxic activity; both showed moderate activities (IC50 value of 1.89 and 2.50 mu M, respectively). (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved. KW - Bulbine frutescens KW - Xanthone KW - seco-Anthraquinone KW - Phenylanthraquinone KW - Cytotoxicity KW - Structure revision Y1 - 2014 U6 - https://doi.org/10.1016/j.phytol.2014.04.004 SN - 1874-3900 SN - 1876-7486 VL - 9 SP - 67 EP - 73 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Arlt, Olga A1 - Schwiebs, Anja A1 - Pfarr, Kathrin A1 - Ranglack, Annika A1 - Bouzas, Ferreiros Nerea A1 - Schreiber, Yannick A1 - Neuber, Corinna A1 - Kleuser, Burkhard A1 - Pfeilschifter, Josef M. A1 - Radeke, Heinfried H. T1 - Dynamic interaction between sphingolipid enzymes, S1P and inflammatory cytokine regulation in dendritic cells T2 - NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY Y1 - 2014 SN - 0028-1298 SN - 1432-1912 VL - 387 SP - S91 EP - S91 PB - Springer CY - New York ER - TY - JOUR A1 - Atilaw, Yoseph A1 - Heydenreich, Matthias A1 - Ndakala, Albert A1 - Akala, Hoseah M. A1 - Kamau, Edwin A1 - Yenesew, Abiy T1 - 3-Oxo-14 alpha, 15 alpha-epoxyschizozygine: A new schizozygane indoline alkaloid from Schizozygia coffaeoides JF - Phytochemistry letters N2 - The stem bark extract of Schizozygia coffaeoides (Apocynaceae) showed moderate antiplasmodial activity (IC50 = 8-12 mu g/mL) against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the extract led to the isolation of a new schizozygane indoline alkaloid, named 3-oxo-14 alpha, 15 alpha-epoxyschizozygine. In addition, two dimeric anthraquinones, cassiamin A and cassiamin B, were identified for the first time in the family Apocynaceae. The structures of the isolated compounds were deduced on the basis of spectroscopic evidence. The schizozygane indole alkaloids showed good to moderate antiplasmodial activities (IC50 = 13-52 mu m). (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved. KW - Schizozygia coffaeoides KW - Schizozygane indoline alkaloid KW - 3-Oxo-14 alpha, 15 alpha-epoxyschizozygine KW - Dimeric anthraquinone KW - Cassiamin A KW - Cassiamin B Y1 - 2014 U6 - https://doi.org/10.1016/j.phytol.2014.07.003 SN - 1874-3900 SN - 1876-7486 VL - 10 SP - 28 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Baier, Heiko A1 - Metzner, Philipp A1 - Körzdörfer, Thomas A1 - Kelling, Alexandra A1 - Holdt, Hans-Jürgen T1 - Efficient palladium(II) precatalysts bearing 4,5-dicyanoimidazol-2-ylidene for the Mizoroki-Heck reaction JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - The new N-heterocyclic carbene (NHC) complex [PdCl2{(CN)(2)IMes}(PPh3)] (2) ({(CN)(2)IMes}: 4,5-dicyano-1,3-dimesitylimidazol-2-ylidene) and the NHC palladacycle [PdCl(dmba){(CN)(2)IMes}] (3) (dmba: N,N-dimethylbenzylamine) have been synthesized by thermolysis of 4,5-dicyano-1,3-dimesityl-2-(pentafluorophenyl) imidazoline (1) in the presence of suitable palladium(II) precursors. The acyclic complex 2 was formed by ligand exchange using the mononuclear precursor [PdCl2(PPh3)(2)] and the palladacycle 3 was formed by cleavage of the dinuclear chloro-bridged precursor [Pd(mu-Cl)(dmba)](2). The new NHC precursor 1-benzyl-4,5-dicyano-2-(pentafluorophenyl)-3-picolylimidazoline (5) was formed by condensation of pentafluorobenzaldehyde with N-benzyl-N'-picolyldiaminomaleonitrile (4). The NHC palladacycle [PdCl2{(CN)(2)IBzPic}] (6) ({(CN)(2)IBzPic}: 1-benzyl-4,5-dicyano-3-picolylimidazol-2-ylidene) was prepared by in situ thermolysis of 5 in the presence of [PdCl2(PhCN)(2)]. The three palladium(II) complexes were characterized by NMR and IR spectroscopy, mass spectrometry and elemental analysis. In addition, the molecular structures of 2 and 3 were determined by X-ray diffraction. The pi-acidity of (CN)(2)IBzPic was compared with (CN)(2)IMes and perviously reported pi-acidic imidazol-2-ylidenes by NBO analysis. The Mizoroki-Heck (MH) reactions of various aryl halides with n-butyl acrylate were performed in the presence of complexes 2, 3 and 6. The new precatalysts showed high activity in the MH reactions giving good-to-excellent product yields with 0.1 mol-% pre-catalyst. The nature of the catalytically active species of 2, 3 and 6 was investigated by poisoning experiments with mercury and transmission electron microscopy. It was found that palladium nanoparticles formed from the precatalysts were involved in the catalytic process. KW - Homogeneous catalysis KW - Palladium KW - Cross coupling KW - Carbene ligands Y1 - 2014 U6 - https://doi.org/10.1002/ejic.201402040 SN - 1434-1948 SN - 1099-0682 IS - 18 SP - 2952 EP - 2960 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Bald, Ilko A1 - Keller, Adrian T1 - Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1146 KW - DNA origami KW - atomic force microscopy KW - single-molecule analysis KW - DNA radiation damage KW - protein binding KW - enzyme reactions KW - G quadruplexes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475843 SN - 1866-8372 IS - 9 SP - 13803 EP - 13823 ER - TY - JOUR A1 - Bald, Ilko A1 - Keller, Adrian T1 - Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy JF - Molecules N2 - DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates. KW - DNA origami KW - atomic force microscopy KW - single-molecule analysis KW - DNA radiation damage KW - protein binding KW - enzyme reactions KW - G quadruplexes Y1 - 2014 U6 - https://doi.org/10.3390/molecules190913803 SN - 1420-3049 VL - 19 IS - 9 SP - 13803 EP - 13823 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bald, Ilko A1 - Keller, Adrian A1 - Kopyra, Janina T1 - On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy JF - RSC Advances : an international journal to further the chemical sciences N2 - Gemcitabine (2′,2′-difluorocytidine) is a well-known radiosensitizer routinely applied in concomitant chemoradiotherapy. During irradiation of biological media with high-energy radiation secondary low-energy (<10 eV) electrons are produced that can directly induce chemical bond breakage in DNA by dissociative electron attachment (DEA). Here, we investigate and compare DEA to the three molecules 2′-deoxycytidine, 2′-deoxy-5-fluorocytidine, and gemcitabine. Fluorination at specific molecular sites, i.e., nucleobase or sugar moiety, is found to control electron attachment and subsequent dissociation pathways. The presence of two fluorine atoms at the sugar ring results in more efficient electron attachment to the sugar moiety and subsequent bond cleavage. For the formation of the dehydrogenated nucleobase anion, we obtain an enhancement factor of 2.8 upon fluorination of the sugar, whereas the enhancement factor is 5.5 when the nucleobase is fluorinated. The observed fragmentation reactions suggest enhanced DNA strand breakage induced by secondary electrons when gemcitabine is incorporated into DNA. KW - low-energy electrons KW - single-strand breaks KW - gas-phase KW - chemoradiation therapy KW - molecular-mechanisms KW - resonant formation KW - damage KW - attachment KW - drugs Y1 - 2014 U6 - https://doi.org/10.1039/C3RA46735J SN - 2046-2069 VL - 4 IS - 13 SP - 6825 EP - 6829 PB - Royal Society of Chemistry ER - TY - GEN A1 - Bald, Ilko A1 - Kopyra, Janina A1 - Keller, Adrian T1 - On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy N2 - Gemcitabine (2′,2′-difluorocytidine) is a well-known radiosensitizer routinely applied in concomitant chemoradiotherapy. During irradiation of biological media with high-energy radiation secondary low-energy (<10 eV) electrons are produced that can directly induce chemical bond breakage in DNA by dissociative electron attachment (DEA). Here, we investigate and compare DEA to the three molecules 2′-deoxycytidine, 2′-deoxy-5-fluorocytidine, and gemcitabine. Fluorination at specific molecular sites, i.e., nucleobase or sugar moiety, is found to control electron attachment and subsequent dissociation pathways. The presence of two fluorine atoms at the sugar ring results in more efficient electron attachment to the sugar moiety and subsequent bond cleavage. For the formation of the dehydrogenated nucleobase anion, we obtain an enhancement factor of 2.8 upon fluorination of the sugar, whereas the enhancement factor is 5.5 when the nucleobase is fluorinated. The observed fragmentation reactions suggest enhanced DNA strand breakage induced by secondary electrons when gemcitabine is incorporated into DNA. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 167 KW - low-energy electrons KW - single-strand breaks KW - gas-phase KW - chemoradiation therapy KW - molecular-mechanisms KW - resonant formation KW - damage KW - attachment KW - drugs Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73412 SP - 6825 EP - 6829 ER - TY - JOUR A1 - Bandrauk, Andre D. A1 - Paramonov, Guennaddi K. T1 - Excitation of muonic molecules dd mu and dt mu by super-intense attosecond soft X-ray laser pulses: Shaped post-laser-pulse muonic oscillations and enhancement of nuclear fusion JF - International journal of modern physics : E, Nuclear physics N2 - The quantum dynamics of muonic molecular ions dd mu and dt mu excited by linearly polarized along the molecular (z)-axis super-intense laser pulses is studied beyond the Born-Oppenheimer approximation by the numerical solution of the time-dependent Schrodinger equation within a three-dimensional model, including the internuclear distance R and muon coordinates z and rho. The peak-intensity of the super-intense laser pulses used in our simulations is I-0 = 3.51 x 10(22) W/cm(2) and the wavelength is lambda(l) = 5nm. In both dd mu and dt mu, expectation values < z > and of muon demonstrate "post-laser-pulse" oscillations after the ends of the laser pulses. In dd mu post-laser-pulse z-oscillations appear as shaped nonoverlapping "echo-pulses". In dt mu post-laser-pulse muonic z-oscillations appear as comparatively slow large-amplitude oscillations modulated with small-amplitude pulsations. The post-laser-pulse rho-oscillations in both dd mu and dt mu appear, for the most part, as overlapping "echo-pulses". The post-laser-pulse oscillations do not occur if the Born-Oppenheimer approximation is employed. Power spectra generated due to muonic motion along both optically active z and optically passive rho degrees of freedom are calculated. The fusion probability in dt mu can be increased by more than 11 times by making use of three sequential super-intense laser pulses. The energy released from the dt fusion in dt mu can by more than 20 GeV exceed the energy required to produce a usable muon and the energy of the laser pulses used to enhance the fusion. The possibility of power production from the laser-enhanced muon-catalyzed fusion is discussed. KW - Muonic molecules KW - super-intense laser pulses KW - laser-enhanced nuclear fusion Y1 - 2014 U6 - https://doi.org/10.1142/S0218301314300148 SN - 0218-3013 SN - 1793-6608 VL - 23 IS - 9 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Banerjee, Shiladitya A1 - Saalfrank, Peter T1 - Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids: a study based on time-dependent correlation functions JF - Physical chemistry, chemical physics : a journal of European Chemical Societies Y1 - 2014 U6 - https://doi.org/10.1039/c3cp53535e SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 1 SP - 144 EP - 158 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Banerjee, Shiladitya A1 - Saalfrank, Peter T1 - Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids : a study based on time- dependent correlation functions Y1 - 2014 UR - http://pubs.rsc.org/en/content/articlehtml/2014/cp/c3cp53535e U6 - https://doi.org/10.1039/C3CP53535E ER - TY - INPR A1 - Baudis, Stefan A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Smart polymers for biomedical applications T2 - Macromolecular chemistry and physics Y1 - 2014 U6 - https://doi.org/10.1002/macp.201400561 SN - 1022-1352 SN - 1521-3935 VL - 215 IS - 24 SP - 2399 EP - 2402 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bauer, Maximilian A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - Diffusion of finite-size particles in two-dimensional channels with random wall configurations JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda Y1 - 2014 U6 - https://doi.org/10.1039/c3cp55160a SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 13 SP - 6118 EP - 6128 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Boese, Adrian Daniel T1 - Assessment of coupled cluster theory and more approximate methods for Hydrogen Bonded Systems (vol 9, pg 4403, 2013) T2 - Journal of chemical theory and computation Y1 - 2014 U6 - https://doi.org/10.1021/ct500041j SN - 1549-9618 SN - 1549-9626 VL - 10 IS - 2 SP - 893 EP - 893 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Boggio, Jose M. Chavez A1 - Bodenmueller, D. A1 - Fremberg, T. A1 - Haynes, R. A1 - Roth, Martin M. A1 - Eisermann, R. A1 - Lisker, M. A1 - Zimmermann, L. A1 - Boehm, Michael T1 - Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization JF - Journal of the Optical Society of America : B, Optical physics N2 - Dispersion engineering in silicon nitride (SiXNY) waveguides is investigated through the optimization of the waveguide transversal dimensions and refractive indices in a multicladding arrangement. Ultraflat dispersion of -84.0 +/- 0.5 ps/nm/km between 1700 and 2440 nm and 1.5 +/- 3 ps/nm/km between 1670 and 2500 nm is numerically demonstrated. It is shown that typical refractive index fluctuations as well as dimension fluctuations during fabrication of the SiXNY waveguides are a limitation for obtaining ultraflat dispersion profiles. Single- and multicladding waveguides are fabricated and their dispersion profiles measured (over nearly 1000 nm) using a low-coherence frequency domain interferometric technique. By appropriate thickness optimization, the zero-dispersion wavelength is tuned over a large spectral range in single-and multicladding waveguides with small refractive index contrast (3%). A flat dispersion profile with +/- 3.2 ps/nm/km variation over 500 nm is obtained in a multicladding waveguide fabricated with a refractive index contrast of 37%. Finally, we generate a nearly three-octave supercontinuum in this dispersion flattened multicladding SiXNY waveguide. (C) 2014 Optical Society of America Y1 - 2014 U6 - https://doi.org/10.1364/JOSAB.31.002846 SN - 0740-3224 SN - 1520-8540 VL - 31 IS - 11 SP - 2846 EP - 2857 PB - Optical Society of America CY - Washington ER - TY - JOUR A1 - Braune, Steffen A1 - Walter, M. A1 - Schulze, F. A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Changes in platelet morphology and function during 24 hours of storage JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - For in vitro studies assessing the interaction of platelets with implant materials, common and standardized protocols for the preparation of platelet rich plasma (PRP) are lacking, which may lead to non-matching results due to the diversity of applied protocols. Particularly, the aging of platelets during prolonged preparation and storage times is discussed to lead to an underestimation of the material thrombogenicity. Here, we study the influence of whole blood-and PRP-storage times on changes in platelet morphology and function. Whole blood PFA100 closure times increased after stimulation with collagen/ADP and collagen/epinephrine. Twenty four hours after blood collection, both parameters were prolonged pathologically above the upper limit of the reference range. Numbers of circulating platelets, measured in PRP, decreased after four hours, but no longer after twenty four hours. Mean platelet volumes (MPV) and platelet large cell ratios (P-LCR, 12 fL - 40 fL) decreased over time. Immediately after blood collection, no debris or platelet aggregates could be visualized microscopically. After four hours, first debris and very small aggregates occurred. After 24 hours, platelet aggregates and also debris progressively increased. In accordance to this, the CASY system revealed an increase of platelet aggregates (up to 90 mu m diameter)with increasing storage time. The percentage of CD62P positive platelets and PF4 increased significantly with storage time in resting PRP. When soluble ADP was added to stored PRP samples, the number of activatable platelets decreased significantly over storage time. The present study reveals the importance of a consequent standardization in the preparation of WB and PRP. Platelet morphology and function, particularly platelet reactivity to adherent or soluble agonists in their surrounding milieu, changed rapidly outside the vascular system. This knowledge is of crucial interest, particularly in the field of biomaterial development for cardiovascular applications, and may help to define common standards in the in vitro hemocompatibility testing of biomaterials. KW - Platelet KW - platelet function KW - platelet rich plasma KW - whole blood KW - platelet aging KW - platelet storage KW - hemocompatibility KW - biomaterials Y1 - 2014 U6 - https://doi.org/10.3233/CH-141876 SN - 1386-0291 SN - 1875-8622 VL - 58 IS - 1 SP - 159 EP - 170 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Brennecke, Johannes A1 - Ochs, Christopher J. A1 - Boudhar, Aicha A1 - Reux, Bastien A1 - Subramanian, Gomathy Sandhya A1 - Lear, Martin J. A1 - Trau, Dieter A1 - Hobley, Jonathan T1 - Design, preparation and assessment of surface-immobilised tetraphenylethenes for biosensing applications JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - Tetraphenylethene (TPE) shows a significant increase of fluorescence intensity when the rotational freedom of its phenyl groups is restricted. This special property allows the use of TPE in sensor applications, which have been previously described for the liquid phase only. However, some applications utilising arrays require the immobilisation of TPE dyes on solid surfaces. In this work, we synthesised and investigated the fluorescence behaviour of TPE derivatives on silica particles and quartz slides and suggest ways to employ the dye's properties in solid phase biosensor applications. 2014 Published by Elsevier B.V. KW - Tetraphenylethene Bioassay Fluorescent dye KW - Microparticles Reagentless assay Y1 - 2014 U6 - https://doi.org/10.1016/j.apsusc.2014.04.061 SN - 0169-4332 SN - 1873-5584 VL - 307 SP - 475 EP - 481 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bressel, Lena A1 - Reich, Oliver T1 - Theoretical and experimental study of the diffuse transmission of light through highly concentrated absorbing and scattering materials Part I: Monte-Carlo simulations JF - Journal of quantitative spectroscopy & radiative transfer N2 - In many technical materials and commercial products like sunscreen or paint high particle and absorber concentrations are present. An important parameter for slabs of these materials is the diffuse transmission of light, which quantifies the total amount of directly and diffusely transmitted light. Due to the high content of scattering particles not only multiple scattering but also additional dependent scattering occurs. Hence, simple analytical models cannot be applied to calculate the diffuse transmission. In this work a Monte-Carlo program for the calculation of the diffuse transmission of light through dispersions in slab-like geometry containing high concentrations of scattering particles and absorbers is presented and discussed in detail. Mie theory is applied for the calculation of the scattering properties of the samples. Additionally, dependent scattering is considered in two different models, the well-known hard sphere model in the Percus-Yevick approximation (HSPYA) and the Yukawa model in the Mean Spherical Approximation (YMSA). Comparative experiments will show the accurateness of the program as well as its applicability to real samples [1]. (C) 2014 Elsevier Ltd. All rights reserved. KW - Monte-Carlo simulations KW - Multiple light scattering KW - Dependent light scattering KW - Hard sphere model in the Percus-Yevick Approximation KW - Yukawa model in the Mean Spherical Approximation KW - Polymer dispersions Y1 - 2014 U6 - https://doi.org/10.1016/j.jqsrt.2014.01.007 SN - 0022-4073 SN - 1879-1352 VL - 146 SP - 190 EP - 198 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Brosnan, Sarah M. A1 - Schlaad, Helmut T1 - Modification of polypeptide materials by Thiol-X chemistry JF - Polymer : the international journal for the science and technology of polymers N2 - Thiol-X chemistry has proven to be a valuable toolbox for modification of peptides, proteins, monomers, and polymers. Recently, this has become especially true for the modification of polypeptides (monomers or polymers), which has resulted in a plethora of novel polymers and materials. With this in mind, this highlight focuses on the recent literature concerning the modification of polypeptides by the use of thiol-X chemistry, in particular to synthetic polypeptides either at the monomer or polymer stage modified by thiol-ene, -Michael addition, and -yne chemistries. (C) 2014 Published by Elsevier Ltd. KW - Polypeptide KW - Thiol-X KW - Click chemistry Y1 - 2014 U6 - https://doi.org/10.1016/j.polymer.2014.08.067 SN - 0032-3861 SN - 1873-2291 VL - 55 IS - 22 SP - 5511 EP - 5516 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity N2 - We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 168 KW - adenoassociated virus KW - anomalous diffusion KW - cytoplasm KW - endosomal escape KW - escherichia-coli KW - infection pathway KW - intracellular-transport KW - living cells KW - models KW - trafficking Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74021 IS - 168 SP - 1591 EP - 1601 ER - TY - JOUR A1 - Cisek, Richard A1 - Tokarz, Danielle A1 - Krouglov, Serguei A1 - Steup, Martin A1 - Emes, Michael J. A1 - Tetlow, Ian J. A1 - Barzda, Virginijus T1 - Second harmonic generation mediated by aligned water in starch granules JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The origin of second harmonic generation (SHG) in starch granules was investigated using ab initio quantum mechanical modeling and experimentally examined using polarization-in, polarization-out (PIPO) second harmonic generation microscopy. Ab initio calculations revealed that the largest contribution to the SHG signal from A- and B-type allomorphs of starch originates from the anisotropic organization of hydroxide and hydrogen bonds mediated by aligned water found in the polymers. The hypothesis was experimentally tested by imaging maize starch granules under various hydration and heat treatment conditions that alter the hydrogen bond network. The highest SHG intensity was found in fully hydrated starch granules, and heat treatment diminished the SHG intensity. The PIPO SHG imaging showed that dried starch granules have a much higher nonlinear optical susceptibility component ratio than fully hydrated granules. In contrast, deuterated starch granules showed a smaller susceptibility component ratio demonstrating that SHG is highly sensitive to the organization of the hydroxyl and hydrogen bond network. The polarization SHG imaging results of potato starch granules, representing starch allomorph B, were compared to those of maize starch granules representing allomorph A. The results showed that the amount of aligned water was higher in the maize granules. Nonlinear microscopy of starch granules provides evidence that varying hydration conditions leads to significant changes in the nonlinear susceptibility ratio as well as the SHG intensity, supporting the hypothesis from ab initio calculations that the dominant contribution to SHG is due to the ordered hydroxide and hydrogen bond network. Y1 - 2014 U6 - https://doi.org/10.1021/jp508751s SN - 1520-6106 VL - 118 IS - 51 SP - 14785 EP - 14794 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Comminges, Clement A1 - Frasca, Stefano A1 - Suetterlin, Martin A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Wollenberger, Ursula T1 - Surface modification with thermoresponsive polymer brushes for a switchable electrochemical sensor JF - RSC Advances N2 - Elaboration of switchable surfaces represents an interesting way for the development of a new generation of electrochemical sensors. In this paper, a method for growing thermoresponsive polymer brushes from a gold surface pre-modified with polyethyleneimine (PEI), subsequent layer-by-layer polyelectrolyte assembly and adsorption of a charged macroinitiator is described. We propose an easy method for monitoring the coil-to-globule phase transition of the polymer brush using an electrochemical quartz crystal microbalance with dissipation (E-QCM-D). The surface of these polymer modified electrodes shows reversible switching from the swollen to the collapsed state with temperature. As demonstrated from E-QCM-D measurements using an original signal processing method, the switch is operating in three reversible steps related to different interfacial viscosities. Moreover, it is shown that the one electron oxidation of ferrocene carboxylic acid is dramatically affected by the change from the swollen to the collapsed state of the polymer brush, showing a spectacular 86% decrease of the charge transfer resistance between the two states. Y1 - 2014 U6 - https://doi.org/10.1039/c4ra07190e SN - 2046-2069 VL - 4 IS - 81 SP - 43092 EP - 43097 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Comminges, Clément A1 - Frasca, Stefano A1 - Sütterlin, Martin A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Wollenberger, Ursula T1 - Surface modification with thermoresponsive polymer brushes for a switchable electrochemical sensor N2 - Elaboration of switchable surfaces represents an interesting way for the development of a new generation of electrochemical sensors. In this paper, a method for growing thermoresponsive polymer brushes from a gold surface pre-modified with polyethyleneimine (PEI), subsequent layer-by-layer polyelectrolyte assembly and adsorption of a charged macroinitiator is described. We propose an easy method for monitoring the coil-to-globule phase transition of the polymer brush using an electrochemical quartz crystal microbalance with dissipation (E-QCM-D). The surface of these polymer modified electrodes shows reversible switching from the swollen to the collapsed state with temperature. As demonstrated from E-QCM-D measurements using an original signal processing method, the switch is operating in three reversible steps related to different interfacial viscosities. Moreover, it is shown that the one electron oxidation of ferrocene carboxylic acid is dramatically affected by the change from the swollen to the collapsed state of the polymer brush, showing a spectacular 86% decrease of the charge transfer resistance between the two states. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 287 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99471 ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Hammann, Tommy A1 - Huehn, Dominik A1 - Parak, Wolfgang J. A1 - Hildebrandt, Niko A1 - Löhmannsröben, Hans-Gerd T1 - Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing JF - Journal of biomedical optics N2 - Nanobioconjugates have been synthesized using cadmium selenide quantum dots (QDs), europium complexes (EuCs), and biotin. In those conjugates, long-lived photoluminescence (PL) is provided by the europium complexes, which efficiently transfer energy via Forster resonance energy transfer (FRET) to the QDs in close spatial proximity. As a result, the conjugates have a PL emission spectrum characteristic for QDs combined with the long PL decay time characteristic for EuCs. The nanobioconjugates synthesis strategy and photo-physical properties are described as well as their performance in a time-resolved streptavidin-biotin PL assay. In order to prepare the QD-EuC-biotin conjugates, first an amphiphilic polymer has been functionalized with the EuC and biotin. Then, the polymer has been brought onto the surface of the QDs (either QD655 or QD705) to provide functionality and to make the QDs water dispersible. Due to a short distance between EuC and QD, an efficient FRET can be observed. Additionally, the QD-EuC-biotin conjugates' functionality has been demonstrated in a PL assay yielding good signal discrimination, both from autofluorescence and directly excited QDs. These newly designed QD-EuC-biotin conjugates expand the class of highly sensitive tools for bioanalytical optical detection methods for diagnostic and imaging applications. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) KW - quantum dots KW - europium complex KW - amphiphilic polymer assembly KW - nanobioconjugate KW - biosensor KW - time-resolved fluorescence Y1 - 2014 U6 - https://doi.org/10.1117/1.JBO.19.10.101506 SN - 1083-3668 SN - 1560-2281 VL - 19 IS - 10 PB - SPIE CY - Bellingham ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Moro, Artur J. A1 - Löhmannsröben, Hans-Gerd T1 - Cyclic GMP recognition using ratiometric QD-fluorophore conjugate nanosensors JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics KW - Quantum dots KW - Naphthyridines KW - Cyclic GMP KW - Base pairing KW - Fluorescent nanoconjugate KW - Nanosensor Y1 - 2014 U6 - https://doi.org/10.1016/j.bios.2013.09.002 SN - 0956-5663 SN - 1873-4235 VL - 52 SP - 288 EP - 292 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Nono, Katia Nchimi A1 - Charbonniere, Loic J. A1 - Hammann, Tommy A1 - Löhmannsröben, Hans-Gerd T1 - Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved Forster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surfacefunctionalised with streptavidins. The permanent spatial donor-acceptor proximity is assured through strong and stable biotin-streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, both associated with simultaneous increase in acceptor intensity and in the decay time. The dye-based assays are realised in TRIS and in PBS, whereas QD-based systems are studied in borate buffer. The delayed emission analysis allows for quantifying the recognition process and for auto-fluorescence-free detection, which is particularly relevant for application in bioanalysis. In accordance with Forster theory, Forsterradii (R0) were found to be around 60 angstrom for organic dyes and around 105 angstrom for QDs. The FRET efficiency (Z) reached 80% and 25% for dye and QD acceptors, respectively. Physical donor-acceptor distances (r) have been determined in the range 45-60 angstrom for organic dye acceptors, while for acceptor QDs between 120 angstrom and 145 angstrom. This newly synthesised biotin-LLC extends the class of highly sensitive analytical tools to be applied in the bioanalytical methods such as time-resolved fluoroimmunoassays (TR-FIA), luminescent imaging and biosensing. Y1 - 2014 U6 - https://doi.org/10.1039/c3cp54883j SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 13 SP - 6060 EP - 6067 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Cywiński, Piotr J. A1 - Nono, Katia Nchimi A1 - Charbonnière, Loïc J. A1 - Hammann, Tommy A1 - Löhmannsröben, Hans-Gerd T1 - Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays N2 - A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved Förster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surface-functionalised with streptavidins. The permanent spatial donor–acceptor proximity is assured through strong and stable biotin–streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, both associated with simultaneous increase in acceptor intensity and in the decay time. The dye-based assays are realised in TRIS and in PBS, whereas QD-based systems are studied in borate buffer. The delayed emission analysis allows for quantifying the recognition process and for auto-fluorescence-free detection, which is particularly relevant for application in bioanalysis. In accordance with Förster theory, Förster-radii (R0) were found to be around 60 Å for organic dyes and around 105 Å for QDs. The FRET efficiency (η) reached 80% and 25% for dye and QD acceptors, respectively. Physical donor–acceptor distances (r) have been determined in the range 45–60 Å for organic dye acceptors, while for acceptor QDs between 120 Å and 145 Å. This newly synthesised biotin-LLC extends the class of highly sensitive analytical tools to be applied in the bioanalytical methods such as time-resolved fluoroimmunoassays (TR-FIA), luminescent imaging and biosensing. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 252 KW - acceptors KW - bioanalysis KW - contrast agents KW - europium KW - fluoroimmunoassay KW - labels KW - lanthanide luminescence KW - quantum dots KW - resonance energy-transfer Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95390 SP - 6060 EP - 6067 ER - TY - JOUR A1 - Degtyar, Elena A1 - Harrington, Matthew J. A1 - Politi, Yael A1 - Fratzl, Peter T1 - The mechanical role of metal ions in biogenic protein-based materials JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Protein-metal interactions-traditionally regarded for roles in metabolic processes-are now known to enhance the performance of certain biogenic materials, influencing properties such as hardness, toughness, adhesion, and self-healing. Design principles elucidated through thorough study of such materials are yielding vital insights for the design of biomimetic metallopolymers with industrial and biomedical applications. Recent advances in the understanding of the biological structure-function relationships are highlighted here with a specific focus on materials such as arthropod biting parts, mussel byssal threads, and sandcastle worm cement. KW - adhesives KW - biomaterials KW - metal coordination KW - sacrificial bonds KW - self-healing materials Y1 - 2014 U6 - https://doi.org/10.1002/anie.201404272 SN - 1433-7851 SN - 1521-3773 VL - 53 IS - 45 SP - 12026 EP - 12044 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Derese, Solomon A1 - Barasa, Leonard A1 - Akala, Hoseah M. A1 - Yusuf, Amir O. A1 - Kamau, Edwin A1 - Heydenreich, Matthias A1 - Yenesew, Abiy T1 - 4 '-Prenyloxyderrone from the stem bark of Millettia oblata ssp teitensis and the antiplasmodial activities of isoflavones from some Millettia species JF - Phytochemistry letters N2 - The CH2Cl2/MeOH (1: 1) extract of the stem bark of Millettia oblata ssp. teitensis showed antiplasmodial activity (IC50 = 10-12 mu g/mL) against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the extract led to the isolation of a new isoflavone, 4'-prenyloxyderrone (1), together with known isoflavones (8-O-methylretusin, durmillone, maximaisoflavone B, maximaisoflavone H and maximaisoflavone J), a rotenoid (tephrosin) and a triterpene (lupeol). Similar investigation of Millettia leucantha resulted in the identification of the isoflavones afrormosin and wistin, and the flavone chrysin. The identification of these compounds was based on their spectroscopic data. Five of the isoflavones isolated from these plants as well as 11 previously reported compounds from Millettia dura were tested and showed good to moderate antiplasmodial activities (IC50 = 13-53 mu M), with the new compound, 4'-prenyloxyderrone, being the most active (IC50 = 13-15 mu M). KW - Millettia oblata ssp teitensis KW - Millettia leucantha KW - Millettia dura; Y1 - 2014 U6 - https://doi.org/10.1016/j.phytol.2014.02.001 SN - 1874-3900 SN - 1876-7486 VL - 8 SP - 69 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Di Florio, Giuseppe A1 - Bruendermann, Erik A1 - Yadavalli, Nataraja Sekhar A1 - Santer, Svetlana A1 - Havenith, Martina T1 - Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films JF - Soft matter N2 - We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy. Y1 - 2014 U6 - https://doi.org/10.1039/c3sm51787j SN - 1744-683X SN - 1744-6848 VL - 10 IS - 10 SP - 1544 EP - 1554 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Ehlert, Christopher A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp01106f SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 27 SP - 14083 EP - 14095 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Ehlert, Christopher A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects BT - a study based on density functional theory N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 173 KW - absorbtion fine-structure KW - graphite Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74429 SP - 14083 EP - 14095 ER - TY - JOUR A1 - Ehlert, Christopher A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects BT - a study based on density functional theory JF - physical chemistry, chemical physics : PCCP N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. KW - absorbtion fine-structure KW - graphite Y1 - 2014 U6 - https://doi.org/10.1039/c4cp01106f SN - 1463-9076 SN - 1463-9084 VL - 2014 IS - 16 SP - 14083 EP - 14095 ER - TY - JOUR A1 - Eisold, Ursula A1 - Kupstat, Annette A1 - Klier, Dennis Tobias A1 - Primus, Philipp-A. A1 - Pschenitza, Michael A1 - Niessner, Reinhard A1 - Knopp, Dietmar A1 - Kumke, Michael Uwe T1 - Probing the physicochemical interactions of 3-hydroxy-benzo[a]pyrene with different monoclonal and recombinant antibodies by use of fluorescence line-narrowing spectroscopy JF - Analytical & bioanalytical chemistry N2 - Characterization of interactions between antigens and antibodies is of utmost importance both for fundamental understanding of the binding and for development of advanced clinical diagnostics. Here, fluorescence line-narrowing (FLN) spectroscopy was used to study physicochemical interactions between 3-hydroxybenzo[a]pyrene (3OH-BaP, as antigen) and a variety of solvent matrices (as model systems) or anti-polycyclic aromatic hydrocarbon antibodies (anti-PAH). We focused the studies on the specific physicochemical interactions between 3OH-BaP and different, previously obtained, monoclonal and recombinant anti-PAH antibodies. Control experiments performed with non-binding monoclonal antibodies and bovine serum albumin (BSA) indicated that nonspecific interactions did not affect the FLN spectrum of 3OH-BaP. The spectral positions and relative intensities of the bands in the FLN spectra are highly dependent on the molecular environment of the 3OH-BaP. The FLN bands correlate with different vibrational modes of 3OH-BaP which are affected by interactions with the molecular environment (pi-pi interactions, H-bonding, or van-der-Waals forces). Although the analyte (3OH-BaP) was the same for all the antibodies investigated, different binding interactions could be identified from the FLN spectra on the basis of structural flexibility and conformational multiplicity of the antibodies' paratopes. KW - FLNS KW - Antibody KW - Paratope KW - Hapten KW - Polycyclic aromatic hydrocarbons Y1 - 2014 U6 - https://doi.org/10.1007/s00216-013-7584-8 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 14 SP - 3387 EP - 3394 PB - Springer CY - Heidelberg ER - TY - THES A1 - Ermeydan, Mahmut Ali T1 - Wood cell wall modification with hydrophobic molecules T1 - Modifikation von Holzzellwänden durch hydrophobe Moleküle N2 - Wood is used for many applications because of its excellent mechanical properties, relative abundance and as it is a renewable resource. However, its wider utilization as an engineering material is limited because it swells and shrinks upon moisture changes and is susceptible to degradation by microorganisms and/or insects. Chemical modifications of wood have been shown to improve dimensional stability, water repellence and/or durability, thus increasing potential service-life of wood materials. However current treatments are limited because it is difficult to introduce and fix such modifications deep inside the tissue and cell wall. Within the scope of this thesis, novel chemical modification methods of wood cell walls were developed to improve both dimensional stability and water repellence of wood material. These methods were partly inspired by the heartwood formation in living trees, a process, that for some species results in an insertion of hydrophobic chemical substances into the cell walls of already dead wood cells, In the first part of this thesis a chemistry to modify wood cell walls was used, which was inspired by the natural process of heartwood formation. Commercially available hydrophobic flavonoid molecules were effectively inserted in the cell walls of spruce, a softwood species with low natural durability, after a tosylation treatment to obtain “artificial heartwood”. Flavonoid inserted cell walls show a reduced moisture absorption, resulting in better dimensional stability, water repellency and increased hardness. This approach was quite different compared to established modifications which mainly address hydroxyl groups of cell wall polymers with hydrophilic substances. In the second part of the work in-situ styrene polymerization inside the tosylated cell walls was studied. It is known that there is a weak adhesion between hydrophobic polymers and hydrophilic cell wall components. The hydrophobic styrene monomers were inserted into the tosylated wood cell walls for further polymerization to form polystyrene in the cell walls, which increased the dimensional stability of the bulk wood material and reduced water uptake of the cell walls considerably when compared to controls. In the third part of the work, grafting of another hydrophobic and also biodegradable polymer, poly(ɛ-caprolactone) in the wood cell walls by ring opening polymerization of ɛ-caprolactone was studied at mild temperatures. Results indicated that polycaprolactone attached into the cell walls, caused permanent swelling of the cell walls up to 5%. Dimensional stability of the bulk wood material increased 40% and water absorption reduced more than 35%. A fully biodegradable and hydrophobized wood material was obtained with this method which reduces disposal problem of the modified wood materials and has improved properties to extend the material’s service-life. Starting from a bio-inspired approach which showed great promise as an alternative to standard cell wall modifications we showed the possibility of inserting hydrophobic molecules in the cell walls and supported this fact with in-situ styrene and ɛ-caprolactone polymerization into the cell walls. It was shown in this thesis that despite the extensive knowledge and long history of using wood as a material there is still room for novel chemical modifications which could have a high impact on improving wood properties. N2 - Der nachwachsende Rohstoff Holz wird aufgrund seiner guten mechanischen Eigenschaften und der leichten Verfügbarkeit für viele Anwendungszwecke genutzt. Quellen und Schrumpfen bei Feuchtigkeitsänderungen des hygroskopischen Werkstoffs Holz limitieren jedoch die Einsatzmöglichkeiten. Ein weiteres Problem stellt der mitunter leichte Abbau – u.a. bei feuchtem Holz - durch Mikroorganismen und/oder Insekten dar. Durch chemische Modifizierungen können die Dimensionsstabilität, die Hydrophobizität und die Dauerhaftigkeit verbessert und damit die potentielle Lebensdauer des Werkstoffes erhöht werden. Dabei ist die dauerhafte Modifikation der Zellwand nur äußerst schwer realisierbar. Inspiriert von der Kernholzbildung in lebenden Bäumen, ein zellwandverändernder Prozess, der Jahre nach der Holzbildung erfolgt, wurden im Rahmen dieser Arbeit neue Ansätze zur chemischen Modifizierung der Zellwände entwickelt, um die Dimensionsstabilität und Hydrophobizität zu erhöhen. Der erste Teil der Arbeit ist stark vom Prozess der Kernholzbildung inspiriert, eine abgeleitete Chemie wurde verwendet, um die Zellwände von Fichte, einem Nadelholz von geringer natürlicher Dauerhaftigkeit, zu modifizieren. Kommerziell verfügbare hydrophobe Flavonoide wurden nach einem Tosylierungsschritt erfolgreich in die Zellwand eingebracht, um so „artifizielles Kernholz“ zu erzeugen. Die modifizierten Holzproben zeigten eine verringerte Wasseraufnahme, die zu erhöhter Dimensionsstabilität und Härte führte. Dieser Ansatz unterscheidet sich grundlegend von bereits etablierten Modifikationen, die hauptsächlich hypdrophile Substanzen an die Hydroxylgruppen der Zellwand anlagern. Der zweite Teil der Arbeit beschäftigt sich mit der Polymerisation von Styren in tosylierten Zellwänden. Es ist bekannt, dass es nur eine schwache Adhäsion zwischen den hydrophoben Polymeren und den hydrophilen Zellwandkomponenten gibt. Die hydrophoben Styren-Monomere wurden in die tosylierte Zellwand eingebracht und zu Polystyren polymerisiert. Wie bei der Modifikation mit Flavonoiden konnte eine erhöhte Dimensionsstabilität und reduzierte Wasseraufnahme der Zellwände beobachtet werden. Im dritten Teil der Arbeit wurde das biologisch abbaubare, hydrophobe poly(ɛ-caprolacton) in der Zellwand aufpolymerisiert. Die Ergebnisse deuten darauf hin, dass Polycaprolacton in der Zellwand gebunden ist und zu einer permanenten Quellung führt (bis zu 5 %). Die Dimensionsstabilität nahm um 40 % zu und die Wasseraufnahmerate konnte um mehr als 35 % reduziert werden. Mit dieser Methode kann nicht nur dimensionsstabileres Holz realisiert werden, auch biologische Abbaubarkeit und damit eine einfache Entsorgung sind gewährleistest. KW - Holzmodifikation KW - hydrophobe Moleküle KW - Dimensionsstabilität KW - Wassergehalt KW - wood modification KW - hydrophobic molecules KW - dimensional stability KW - moisture content Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-71325 ER - TY - JOUR A1 - Ermeydan, Mahmut Ali A1 - Cabane, Etienne A1 - Gierlinger, Notburga A1 - Koetz, Joachim A1 - Burgert, Ingo T1 - Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls JF - RSC Advances N2 - As an engineering material derived from renewable resources, wood possesses excellent mechanical properties in view of its light weight but also has some disadvantages such as low dimensional stability upon moisture changes and low durability against biological attack. Polymerization of hydrophobic monomers in the cell wall is one of the potential approaches to improve the dimensional stability of wood. A major challenge is to insert hydrophobic monomers into the hydrophilic environment of the cell walls, without increasing the bulk density of the material due to lumen filling. Here, we report on an innovative and simple method to insert styrene monomers into tosylated cell walls (i.e. -OH groups from natural wood polymers are reacted with tosyl chloride) and carry out free radical polymerization under relatively mild conditions, generating low wood weight gains. In-depth SEM and confocal Raman microscopy analysis are applied to reveal the distribution of the polystyrene in the cell walls and the lumen. The embedding of polystyrene in wood results in reduced water uptake by the wood cell walls, a significant increase in dimensional stability, as well as slightly improved mechanical properties measured by nanoindentation. Y1 - 2014 U6 - https://doi.org/10.1039/c4ra00741g SN - 2046-2069 VL - 4 IS - 25 SP - 12981 EP - 12988 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Ermeydan, Mahmut Ali A1 - Cabane, Etienne A1 - Gierlinger, Notburga A1 - Koetz, Joachim A1 - Burgert, Ingo T1 - Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls N2 - As an engineering material derived from renewable resources, wood possesses excellent mechanical properties in view of its light weight but also has some disadvantages such as low dimensional stability upon moisture changes and low durability against biological attack. Polymerization of hydrophobic monomers in the cell wall is one of the potential approaches to improve the dimensional stability of wood. A major challenge is to insert hydrophobic monomers into the hydrophilic environment of the cell walls, without increasing the bulk density of the material due to lumen filling. Here, we report on an innovative and simple method to insert styrene monomers into tosylated cell walls (i.e. –OH groups from natural wood polymers are reacted with tosyl chloride) and carry out free radical polymerization under relatively mild conditions, generating low wood weight gains. In-depth SEM and confocal Raman microscopy analysis are applied to reveal the distribution of the polystyrene in the cell walls and the lumen. The embedding of polystyrene in wood results in reduced water uptake by the wood cell walls, a significant increase in dimensional stability, as well as slightly improved mechanical properties measured by nanoindentation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 274 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98736 ER - TY - JOUR A1 - Ermeydan, Mahmut Ali A1 - Cabane, Etienne A1 - Hass, Philipp A1 - Koetz, Joachim A1 - Burgert, Ingo T1 - Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(epsilon-caprolactone) grafting into the cell walls JF - Green chemistry : an international journal and green chemistry resource N2 - Materials derived from renewable resources are highly desirable in view of more sustainable manufacturing. Among the available natural materials, wood is one of the key candidates, because of its excellent mechanical properties. However, wood and wood-based materials in engineering applications suffer from various restraints, such as dimensional instability upon humidity changes. Several wood modification treatments increase water repellence, but the insertion of hydrophobic polymers can result in a composite material which cannot be considered as renewable anymore. In this study, we report on the grafting of the fully biodegradable poly(epsilon-caprolactone) (PCL) inside the wood cell walls by Sn(Oct)(2) catalysed ring-opening polymerization (ROP). The presence of polyester chains within the wood cell wall structure is monitored by confocal Raman imaging and spectroscopy as well as scanning electron microscopy. Physical tests reveal that the modified wood is more hydrophobic due to the bulking of the cell wall structure with the polyester chains, which results in a novel fully biodegradable wood material with improved dimensional stability. Y1 - 2014 U6 - https://doi.org/10.1039/c4gc00194j SN - 1463-9262 SN - 1463-9270 VL - 16 IS - 6 SP - 3313 EP - 3321 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Ermeydan, Mahmut Ali A1 - Cabane, Etienne A1 - Hass, Philipp A1 - Koetz, Joachim A1 - Burgert, Ingo T1 - Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls N2 - Materials derived from renewable resources are highly desirable in view of more sustainable manufacturing. Among the available natural materials, wood is one of the key candidates, because of its excellent mechanical properties. However, wood and wood-based materials in engineering applications suffer from various restraints, such as dimensional instability upon humidity changes. Several wood modification treatments increase water repellence, but the insertion of hydrophobic polymers can result in a composite material which cannot be considered as renewable anymore. In this study, we report on the grafting of the fully biodegradable poly(ε-caprolactone) (PCL) inside the wood cell walls by Sn(Oct)2 catalysed ring-opening polymerization (ROP). The presence of polyester chains within the wood cell wall structure is monitored by confocal Raman imaging and spectroscopy as well as scanning electron microscopy. Physical tests reveal that the modified wood is more hydrophobic due to the bulking of the cell wall structure with the polyester chains, which results in a novel fully biodegradable wood material with improved dimensional stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 270 KW - ring-opening polymerization KW - confocal raman microscopy KW - epsilon-caprolactone KW - mechanical-properties KW - structural-characterization KW - stannous octoate KW - copolymers KW - degradation KW - composites KW - cellulose Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97265 SP - 3313 EP - 3321 ER - TY - THES A1 - Faivre, Damien T1 - Biological and biomimetic formation and organization of magnetic nanoparticles T1 - Biologische und biomimetische Bildung und Anordnung von magnetischen Nanopartikel N2 - Biological materials have ever been used by humans because of their remarkable properties. This is surprising since the materials are formed under physiological conditions and with commonplace constituents. Nature thus not only provides us with inspiration for designing new materials but also teaches us how to use soft molecules to tune interparticle and external forces to structure and assemble simple building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosomes represent a striking example of such an accomplishment where a very simple living organism controls the properties of inorganics via organics at the nanometer-scale to form a single magnetic dipole that orients the cell in the Earth magnetic field lines. My group has developed a biological and a bio-inspired research based on these bacteria. My research, at the interface between chemistry, materials science, physics, and biology focuses on how biological systems synthesize, organize and use minerals. We apply the design principles to sustainably form hierarchical materials with controlled properties that can be used e.g. as magnetically directed nanodevices towards applications in sensing, actuating, and transport. In this thesis, I thus first present how magnetotactic bacteria intracellularly form magnetosomes and assemble them in chains. I developed an assay, where cells can be switched from magnetic to non-magnetic states. This enabled to study the dynamics of magnetosome and magnetosome chain formation. We found that the magnetosomes nucleate within minutes whereas chains assembles within hours. Magnetosome formation necessitates iron uptake as ferrous or ferric ions. The transport of the ions within the cell leads to the formation of a ferritin-like intermediate, which subsequently is transported and transformed within the magnetosome organelle in a ferrihydrite-like precursor. Finally, magnetite crystals nucleate and grow toward their mature dimension. In addition, I show that the magnetosome assembly displays hierarchically ordered nano- and microstructures over several levels, enabling the coordinated alignment and motility of entire populations of cells. The magnetosomes are indeed composed of structurally pure magnetite. The organelles are partly composed of proteins, which role is crucial for the properties of the magnetosomes. As an example, we showed how the protein MmsF is involved in the control of magnetosome size and morphology. We have further shown by 2D X-ray diffraction that the magnetosome particles are aligned along the same direction in the magnetosome chain. We then show how magnetic properties of the nascent magnetosome influence the alignment of the particles, and how the proteins MamJ and MamK coordinate this assembly. We propose a theoretical approach, which suggests that biological forces are more important than physical ones for the chain formation. All these studies thus show how magnetosome formation and organization are under strict biological control, which is associated with unprecedented material properties. Finally, we show that the magnetosome chain enables the cells to find their preferred oxygen conditions if the magnetic field is present. The synthetic part of this work shows how the understanding of the design principles of magnetosome formation enabled me to perform biomimetic synthesis of magnetite particles within the highly desired size range of 25 to 100 nm. Nucleation and growth of such particles are based on aggregation of iron colloids termed primary particles as imaged by cryo-high resolution TEM. I show how additives influence magnetite formation and properties. In particular, MamP, a so-called magnetochrome proteins involved in the magnetosome formation in vivo, enables the in vitro formation of magnetite nanoparticles exclusively from ferrous iron by controlling the redox state of the process. Negatively charged additives, such as MamJ, retard magnetite nucleation in vitro, probably by interacting with the iron ions. Other additives such as e.g. polyarginine can be used to control the colloidal stability of stable-single domain sized nanoparticles. Finally, I show how we can “glue” magnetic nanoparticles to form propellers that can be actuated and swim with the help of external magnetic fields. We propose a simple theory to explain the observed movement. We can use the theoretical framework to design experimental conditions to sort out the propellers depending on their size and effectively confirm this prediction experimentally. Thereby, we could image propellers with size down to 290 nm in their longer dimension, much smaller than what perform so far. N2 - Biologische Materialien wie Knochen, Muscheln und Holz wurden von den Menschen seit den ältesten Zeiten verwendet. Diese biologisch gebildeten Materialien haben bemerkenswerte Eigenschaften. Dies ist besonders überraschend, da sie unter physiologischen Bedingungen und mit alltäglichen Bestandteilen gebildet sind. Die Natur liefert uns also nicht nur mit Inspiration für die Entwicklung neuer Materialien, sondern lehrt uns auch, wie biologische Additiven benutzen werden können, um einfache synthetische Bausteine in funktionale Einheiten zu strukturieren. Magnetotaktischen Bakterien und ihre Kette von Magnetosomen sind ein Beispiel, wo einfache Lebewesen die Eigenschaften von anorganischen Materialien steuern, um sich entlang den magnetischen Feldlinien der Erde zu orientieren. Die von den Bakterien gebildeten Magnetosomen sind von besonderem Interesse, da mit magnetischen Eisenoxid-Nanopartikeln in den letzten zehn Jahren einer Vielzahl von Bio-und nanotechnologischen Anwendungen entwickelt worden sind. In dieser Arbeit stelle ich eine biologische und eine bio-inspirierte Forschung auf der Grundlage der magnetotaktischen Bakterien vor. Diese Forschung verbindet die neuesten Entwicklungen von Nanotechnik in der chemischen Wissenschaft, die neuesten Fortschritte der Molekularbiologie zusammen mit modernen Messverfahren. Mein Forschungsschwerpunkt liegt somit an der Schnittstelle zwischen Chemie, Materialwissenschaften, Physik und Biologie. Ich will verstehen, wie biologische Systeme Materialien synthetisieren und organisieren, um Design-Prinzipien zu extrahieren, damit hierarchischen Materialien mit kontrollierten Eigenschaften nachhaltig gebildet werden. KW - magnetotaktische Bakterien KW - Magnetit Nanopartikel KW - Biomineralisation KW - magnetite KW - nanoparticle KW - biomineralization KW - magnetosome KW - magnetotactic bacteria Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72022 ER - TY - JOUR A1 - Friess, Fabian A1 - Lendlein, Andreas A1 - Wischke, Christian T1 - Photoinduced synthesis of polyester networks from methacrylate functionalized precursors: analysis of side reactions JF - Polymers for advanced technologies N2 - Polyester networks can be prepared by ultraviolet (UV)-light-induced radical polymerization of methacrylate functionalized oligo(epsilon-caprolactone)s. The properties and functions of the obtained materials depend on defined network structures and may be altered, if crosslinking would occur by side reactions in other positions than the methacrylate endgroups. In order to explore whether and to which extent such side reactions occur, network synthesis as well as related model reactions were performed in the absence of photoinitiator. Hereby precursor structures (linear and four-arm star-shaped) and reaction conditions (in solution and in the melt) were varied. Unspecific side reactions were found only upon extensive UV irradiation for 60min (26 mW cm(-2)) with minor but detectable alterations of physicochemical properties of the networks. The analysis of model reactions suggested minor photolytic cleavage of ester bonds during polymer network synthesis. However, the effect of these side reactions on network properties and functions appeared to be less relevant than an incomplete precursor integration because of a too short UV irradiation for crosslinking. Copyright (c) 2014 John Wiley & Sons, Ltd. KW - poly(epsilon-caprolactone) methacrylate KW - crosslinking KW - excimer UV light KW - side reaction KW - photoinduced radical polymerization Y1 - 2014 U6 - https://doi.org/10.1002/pat.3313 SN - 1042-7147 SN - 1099-1581 VL - 25 IS - 11 SP - 1285 EP - 1292 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Fudickar, Werner A1 - Linker, Torsten T1 - Intermediates in the formation and thermolysis of peroxides from oxidations with singlet oxygen JF - Australian journal of chemistry N2 - Herein we describe the recent mechanistic understandings of the singlet oxygen ene reaction to give hydroperoxides and the [4+2] cycloaddition affording endoperoxides. Both experimental findings and theoretical work conclude in the formation of intermediates structurally similar to perepoxides during the ene reaction. Such intermediates mainly control the regio- and stereoselectivities of this reaction class. For the [4+2] cycloaddition, both a synchronous concerted reaction (benzene, naphthalenes) and a stepwise reaction with a non-symmetric zwitterionic intermediate (larger acenes) have been found. The thermolysis of endoperoxides derived from acenes proceeds stepwise for anthracenes, but in a concerted manner for less stable adducts such as naphthalene. Y1 - 2014 U6 - https://doi.org/10.1071/CH13423 SN - 0004-9425 SN - 1445-0038 VL - 67 IS - 3 SP - 320 EP - 327 PB - CSIRO CY - Clayton ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Saalfrank, Peter T1 - A six-dimensional potential energy surface for Ru(0001)(2x2):CO JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We present a new global ground state potential energy surface (PES) for carbon monoxide at a coverage of 1/4, on a rigid Ru(0001) surface [Ru(0001)(2x2):CO]. All six adsorbate degrees of freedom are considered. For constructing the PES, we make use of more than 90 000 points calculated with periodic density functional theory using the RPBE exchange-correlation functional and an empirical van der Waals correction. These points are used for interpolation, utilizing a symmetry-adapted corrugation reducing procedure (CRP). Three different interpolation schemes with increasing accuracy have been realized, giving rise to three flavours of the CRP PES. The CRP PES yields in agreement with the DFT reference and experiments, the atop position of CO to be the most stable adsorption geometry, for the most accurate interpolation with an adsorption energy of 1.69 eV. The CRP PES shows that diffusion parallel to the surface is hindered by a barrier of 430 meV, and that dissociation is facilitated but still activated. As a first "real" application and further test of the new potential, the six-dimensional vibrational Schrodinger equation is solved variationally to arrive at fully coupled, anharmonic frequencies and vibrational wavefunctions for the vibrating, adsorbed CO molecule. Good agreement with experiment is found also here. Being analytical, the new PES opens an efficient way towards multidimensional dynamics. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4894083 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Ghobadi, Ehsan A1 - Heuchel, Matthias A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Atomistic simulation of the shape-memory effect in dry and water swollen Poly[(rac-lactide)-co-glycolide] and copolyester urethanes thereof JF - Macromolecular chemistry and physics N2 - An atomistic molecular dynamics simulation approach is applied to model the influence of urethane linker units as well as the addition of water molecules on the simulated shape-memory properties of poly[(rac-lactide)-co-glycolide] (PLGA) and PLGA-based copolyester urethanes comprising different urethane linkers. The shape-memory performance of these amorphous packing models is explored in a simulated heating-deformation-cooling-heating procedure. Depending on the type of incorporated urethane linker, the mechanical properties of the dry copolyester urethanes are found to be significantly improved compared with PLGA, which can be attributed to the number of intermolecular hydrogen bonds between the urethane units. Good shape-memory properties are observed for all the modeled systems. In the dry state, the shape fixation is found to be improved by implementation of urethane units. After swelling of the copolymer models with water, which results in a reduction of their glass transition temperatures, the relaxation kinetics during unloading and shape recovery are found to be substantially accelerated. KW - molecular dynamics simulations KW - polyesterurethane KW - shape-memory effect Y1 - 2014 U6 - https://doi.org/10.1002/macp.201300507 SN - 1022-1352 SN - 1521-3935 VL - 215 IS - 1 SP - 65 EP - 75 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf ED - Metzler, Ralf T1 - Non-universal tracer diffusion in crowded media of non-inert obstacles JF - Physical Chemistry Chemical Physics N2 - We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer–obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer–obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer–crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids. KW - fluorescence correlation spectroscopy KW - single-particle tracking KW - anomalous diffusion KW - living cells KW - physiological consequences KW - langevin equation KW - infection pathway KW - excluded volume KW - brownian-motion KW - random-walks Y1 - 2014 SN - 1463-9076 VL - 3 IS - 17 SP - 1847 EP - 1858 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Non-universal tracer diffusion in crowded media of non-inert obstacles N2 - We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer–obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer–obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer–crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 186 KW - escence correlation spectroscopy KW - single-particle tracking KW - anomalous diffusion KW - living cells KW - physiological consequences KW - langevin equation KW - infection pathway KW - excluded volume KW - brownian-motion KW - random-walks Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77128 SP - 1847 EP - 1858 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - THES A1 - Giordano, Cristina T1 - A neglected world: transition metal nitride and metal carbide based nanostructures T1 - Eine vernachlässigte Welt: Übergangsmetallnitrid- und Metallcarbid-basierte Nanostrukturen BT - novel synthesis and future perspectives BT - neuartige Synthese und Zukunftsperspektiven N2 - Potentiality of nanosized materials has been largely proved but a closer look shows that a significant percentage of this research is related to oxides and metals, while the number drastically drops for metallic ceramics, namely transition metal nitrides and metal carbides. The lack of related publications do not reflect their potential but rather the difficulties related to their synthesis as dense and defect-free structures, fundamental prerequisites for advanced mechanical applications. The present habilitation work aims to close the gap between preparation and processing, indicating novel synthetic pathways for a simpler and sustainable synthesis of transition metal nitride (MN) and carbide (MC) based nanostructures and easier processing thereafter. In spite of simplicity and reliability, the designed synthetic processes allow the production of functional materials, with the demanded size and morphology. The goal was achieved exploiting classical and less-classical precursors, ranging from common metal salts and molecules (e.g. urea, gelatin, agar, etc), to more exotic materials, such as leafs, filter paper and even wood. It was found that the choice of precursors and reaction conditions makes it possible to control chemical composition (going for instance from metal oxides to metal oxy-nitrides to metal nitrides, or from metal nitrides to metal carbides, up to quaternary systems), size (from 5 to 50 nm) and morphology (going from mere spherical nanoparticles to rod-like shapes, fibers, layers, meso-porous and hierarchical structures, etc). The nature of the mixed precursors also allows the preparation of metal nitrides/carbides based nanocomposites, thus leading to multifunctional materials (e.g. MN/MC@C, MN/MC@PILs, etc) but also allowing dispersion in liquid media. Control over composition, size and morphology is obtained with simple adjustment of the main route, but also coupling it with processes such as electrospin, aerosol spray, bio-templating, etc. Last but not least, the nature of the precursor materials also allows easy processing, including printing, coating, casting, film and thin layers preparation, etc). The designed routes are, concept-wise, similar and they all start by building up a secondary metal ion-N/C precursor network, which converts, upon heat treatment, into an intermediate “glass”. This glass stabilizes the nascent nanoparticles during their nucleation and impairs their uncontrolled growth during the heat treatment (scheme 1). This way, one of the main problems related to the synthesis of MN/MC, i.e. the need of very high temperature, could also be overcome (from up to 2000°C, for classical synthesis, down to 700°C in the present cases). The designed synthetic pathways are also conceived to allow usage of non-toxic compounds and to minimize (or even avoid) post-synthesis purification, still bringing to phase pure and well-defined (crystalline) nanoparticles. This research aids to simplify the preparation of MN/MC, making these systems now readily available in suitable amounts both for fundamental and applied science. The prepared systems have been tested (in some cases for the first time) in many different fields, e.g. battery (MnN0.43@C shown a capacity stabilized at a value of 230 mAh/g, with coulombic efficiencies close to 100%), as alternative magnetic materials (Fe3C nanoparticles were prepared with different size and therefore different magnetic behavior, superparamagnetic or ferromagnetic, showing a saturation magnetization value up to 130 emu/g, i.e. similar to the value expected for the bulk material), as filters and for the degradation of organic dyes (outmatching the performance of carbon), as catalysts (both as active phase but also as active support, leading to high turnover rate and, more interesting, to tunable selectivity). Furthermore, with this route, it was possible to prepare for the first time, to the best of our knowledge, well-defined and crystalline MnN0.43, Fe3C and Zn1.7GeN1.8O nanoparticles via bottom-up approaches. Once the synthesis of these materials can be made straightforward, any further modification, combination, manipulation, is in principle possible and new systems can be purposely conceived (e.g. hybrids, nanocomposites, ferrofluids, etc). N2 - Materialien sind wichtige Hilfsmittel, die wir täglich benutzen, um unser Leben einfacher zu machen. Materialien werden durch ihre Eigenschaften charakterisiert. Manche sind stark, manche sind elektrisch, manche magnetisch, usw. Wenn ein Stoff auf die Dimension eines Virus verkleinert wird, zeigen sich besondere Veränderungen. War das Material groß z.B. elektrisch, hat es klein diese Eigenschaft nicht mehr. Groß war es glanzlos, aber klein ist es transparent... Das heißt, dass jedes bekannte Material prinzipiell ein neues Material werden kann, nur durch die Veränderung seiner Größe. Wegen dieser besonderen Entdeckung, ist seit vielen Jahren ein Großteil der Forschung Nanopartikeln gewidmet. Dennoch werden in diesem Gebiet meistens besondere Materialien untersucht, weil ihre Anwendungsfelder weithin bekannt und wichtig sind. Meine Forschung basiert auf der Untersuchung neuer oder weniger bekannter Materialien, nämlich Übergangsmetallnitride und Übergangsmetallcarbide als Nanostrukturen. Sie sind nicht so bekannt, weil sie nicht so einfach herzustellen waren (die klassische Synthese braucht eine hohe Temperatur bis 2000°C, und oft toxische Reaktionsmittel). Trotzdem sind sie sehr interessante Materialien, weil sie auf der Grenze zwischen reinen Metallen und reinen keramischen Materialien hinsichtlich der Eigenschaften liegen. Das heißt, sie sind z.B. sehr fest, aber auch leitend, sie haben einen hohen Schmelzpunkt und sind magnetisch, etc. Durch die hier vorgestellte Forschung wird die Synthese dieser Materialien einfacher gemacht, bei niedrigen Temperaturen, mit natürlichen Produkten (z.B. Harnstoff, Gelatine, Agar, Zellulose, etc). Die Eigenschaften und Anwendungsmöglichkeiten dieser Systeme wurden auch studiert, ebenso wie die Kontrolle der Größe und Form. So konnten wir sphärische, rohrförmige, und fiber-basierte Nanostrukturen synthetisieren, aber sogar Blätter und Holz konnten als Reaktionsmittel benutzt werden und in Nitrid und Carbid umgewandelt werden, ohne die Form zu ändern. Weil die Synthese dieser Materialien direkt gemacht werden konnte, ist prinzipiell jede weitere Modifikation, Kombination und Manipulation möglich. So können jetzt neue Systeme entworfen werden. KW - metal carbides KW - metal nitrides KW - nanostructures KW - sol-gel KW - Metallnitride KW - Metallcarbide KW - Nanostrukturen KW - Sol-Gel Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-75375 ER - TY - JOUR A1 - Goebel, Ronald A1 - Hesemann, Peter A1 - Friedrich, Alwin A1 - Rothe, Regina A1 - Schlaad, Helmut A1 - Taubert, Andreas T1 - Modular thiol-ene chemistry approach towards mesoporous silica monoliths with organically modified pore walls JF - Chemistry - a European journal N2 - The surface modification of mesoporous silica monoliths through thiol-ene chemistry is reported. First, mesoporous silica monoliths with vinyl, allyl, and thiol groups were synthesized through a sol-gel hydrolysis-poly-condensation reaction from tetramethyl orthosilicate (TMOS) and vinyltriethoxysilane, allyltriethoxysilane, and (3-mercaptopropyl) trimethoxysilane, respectively. By variation of the molar ratio of the comonomers TMOS and functional silane, mesoporous silica objects containing different amounts of vinyl, allyl, and thiol groups were obtained. These intermediates can subsequently be derivatized through radical photoaddition reactions either with a thiol or an olefin, depending on the initial pore wall functionality, to yield silica monoliths with different pore-wall chemistries. Nitrogen sorption, small-angle X-ray scattering, solid-state NMR spectroscopy, elemental analysis, thermogravimetric analysis, and redox titration demonstrate that the synthetic pathway influences the morphology and pore characteristics of the resulting monoliths and also plays a significant role in the efficiency of functionalization. Moreover, the different reactivity of the vinyl and allyl groups on the pore wall affects the addition reaction, and hence, the degree of the pore-wall functionalization. This report demonstrates that thiol-ene photoaddition reactions are a versatile platform for the generation of a large variety of organically modified silica monoliths with different pore surfaces. KW - mesoporous materials KW - photochemistry KW - sol-gel processes KW - surface chemistry Y1 - 2014 U6 - https://doi.org/10.1002/chem.201403982 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 52 SP - 17579 EP - 17589 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Goetze, Jan P. A1 - Kröner, Dominik A1 - Banerjee, Shiladitya A1 - Karasulu, Bora A1 - Thiel, Walter T1 - Carotenoids as a shortcut for chlorophyll Soret-to-Q band energy flow JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - It is proposed that xanthophylls, and carotenoids in general, may assist in energy transfer from the chlorophyll Soret band to the Q band. Ground-state (1A(g)) and excited-state (1B(u)) optimizations of violaxanthin (Vx) and zeaxanthin (Zx) are performed in an environment mimicking the light-harvesting complex II (LHCII), including the closest chlorophyll b molecule (Chl). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) is used in combination with a semi-empirical description to obtain the excited-state geometries, supported by additional DFT/multireference configuration interaction calculations, with and without point charges representing LHCII. In the ground state, Vx and Zx show similar properties. At the 1B(u) minimum, the energy of the Zx 1Bu state is below the Chl Q band, in contrast to Vx. Both Vx and Zx may act as acceptors of Soret-state energy; transfer to the Q band seems to be favored for Vx. These findings suggest that carotenoids may generally mediate Soret-to-Q energy flow in LHCII. KW - carotenoids KW - chlorophyll KW - density functional calculations KW - energy transfer KW - xanthophylls Y1 - 2014 U6 - https://doi.org/10.1002/cphc.201402233 SN - 1439-4235 SN - 1439-7641 VL - 15 IS - 15 SP - 3391 EP - 3400 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Grunzel, Petra A1 - Pilarek, Maciej A1 - Steinbrueck, Doerte A1 - Neubauer, Antje A1 - Brand, Eva A1 - Kumke, Michael Uwe A1 - Neubauer, Peter A1 - Krause, Mirja T1 - Mini-scale cultivation method enables expeditious plasmid production in Escherichia coli JF - Biotechnology journal : systems & synthetic biology, nanobiotech, medicine N2 - The standard procedure in the lab for plasmid isolation usually involves a 2-mL, 16 h over-night cultivation in 15-mL bioreaction tubes in LB medium. This is time consuming, and not suitable for high-throughput applications. This study shows that it is possible to produce plasmid DNA (pDNA) in a 1.5-mL microcentrifuge tube with only 100 L cultivation volume in less than 7 h with a simple protocol. Compared with the standard LB cultivation for pDNA production reaching a final pDNA concentration range of 1.5-4 mu g mL(-1), a 6- to 10-fold increase in plasmid concentration (from 10 up to 25 mu g mL(-1) cultivation volume) is achieved using an optimized medium with an internal substrate delivery system (EnBase (R)). Different strains, plasmids, and the applicability of different inoculation tools (i.e. different starting ODs) were compared, demonstrating the robustness of the system. Additionally, dissolved oxygen was monitored in real time online, indicating that under optimized conditions oxygen limitation can be avoided. We developed a simple protocol with a significantly decreased procedure time, enabling simultaneous handling of more samples, while a consistent quality and a higher final pDNA concentration are ensured. KW - Escherichia coli KW - High-cell-density culture KW - Miniaturized cultivations KW - Optical oxygen sensor KW - Plasmid DNA production Y1 - 2014 U6 - https://doi.org/10.1002/biot.201300177 SN - 1860-6768 SN - 1860-7314 VL - 9 IS - 1 SP - 128 EP - 136 PB - Wiley-VCH CY - Weinheim ER -