TY - JOUR A1 - Federico, Stefania A1 - Pierce, Benjamin F. A1 - Piluso, Susanna A1 - Wischke, Christian A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine. KW - biomaterials KW - collagen KW - gels KW - peptides KW - protein-protein interactions Y1 - 2015 U6 - https://doi.org/10.1002/anie.201505227 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 37 SP - 10980 EP - 10984 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Piluso, Susanna T1 - Design of biopolymer-based networks with defined molecular architecture T1 - Design biopolymer-basierter Netzwerke mit definierter molekularer Architektur N2 - In this work, the synthesis of biopolymer-based hydrogel networks with defined architecture is presented. In order to obtain materials with defined properties, the chemoselective copper-catalyzed azide-alkyne cycloaddition (or Click Chemistry) was used for the synthesis of gelatin-based hydrogels. Alkyne-functionalized gelatin was reacted with four different diazide crosslinkers above its sol-gel transition to suppress the formation of triple helices. By variation of the crosslinking density and the crosslinker flexibility, the swelling (Q: 150-470 vol.-%;) and the Young’s and shear moduli (E: 50 kPa - 635 kPa, G’: 0.1 kPa - 16 kPa) could be tuned in the kPa range. In order to understand the network structure, a method based on the labelling of free functional groups within the hydrogel was developed. Gelatin-based hydrogels were incubated with alkyne-functionalized fluorescein to detect the free azide groups, resulting from the formation of dangling chains. Gelatin hydrogels were also incubated with azido-functionalized fluorescein to check the presence of alkyne groups available for the attachment of bioactive molecules. By using confocal laser scanning microscopy and fluorescence spectroscopy, the amount of crosslinking, grafting and free alkyne groups could be determined. Dangling chains were observed in samples prepared by using an excess of crosslinker and also when using equimolar amounts of alkyne:azide. In the latter case the amount of dangling chains was affected by the crosslinker structure. Specifically, 0.1% of dangling chains were found using 4,4’-diazido-2,2’-stilbene-disulfonic acid as cosslinker, 0.06% with 1,8-diazidooctane, 0.05% with 1,12-diazidododecane and 0.022 % with PEG-diazide. This observation could be explained considering the structure of the crosslinkers. During network formation, the movements of the gelatin chains are restricted due to the formation of covalent netpoints. A further crosslinking will be possible only in the case of crosslinker that are flexible and long enough to reach another chain. The method used to obtain defined gelatin-based hydrogels enabled also the synthesis of hyaluronic acid-based hydrogels with tailorable properties. Alkyne-functionalized hyaluronic acid was crosslinked with three different linkers having two terminal azide functionalities. By variation of the crosslinking density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-3 kPa have been prepared. The variation of the crosslinking density and crosslinker type had furthermore an influence also on the hydrolytic and enzymatic degradation of gelatin-based hydrogels. Hydrogels with a low crosslinker amount experienced a faster decrease in mass loss and elastic modulus compared to hydrogels with higher crosslinker content. Moreover, the structure of the crosslinker had a strong influence on the enzymatic degradation. Hydrogels containing a crosslinker with a rigid structure were much more resistant to enzymatic degradation than hydrogels containing a flexible crosslinker. During hydrolytic degradation, the hydrogel became softer while maintaining the same outer dimensions. These observations are in agreement with a bulk degradation mechanism, while the decrease in size of the hydrogels during enzymatic degradation suggested a surface erosion mechanism. Because of the use of small amount of crosslinker (0.002 mol.% 0.02 mol.%) the networks synthesized can still be defined as biopolymer-based hydrogels. However, they contain a small percentage of synthetic residues. Alternatively, a possible method to obtain biopolymer-based telechelics, which could be used as crosslinkers, was investigated. Gelatin-based fragments with defined molecular weight were obtained by controlled degradation of gelatin with hydroxylamine, due to its specific action on asparaginyl-glycine bonds. The reaction of gelatin with hydroxylamine resulted in fragments with molecular weights of 15, 25, 37, and 50 kDa (determined by SDS-PAGE) independently of the reaction time and conditions. Each of these fragments could be potentially used for the synthesis of hydrogels in which all components are biopolymer-based materials. N2 - In dieser Arbeit wird die Synthese Biopolymer-basierter Hydrogelnetzwerke mit definierter Architektur beschrieben. Um Materialien mit definierten und einstellbaren Eigenschaften zu erhalten, wurde die chemoselektive Kupferkatalysierte Azid-Alkin-Cycloadditionsreaktion (auch als Click-Chemie bezeichnet) für die Synthese Gelatine-basierter Netzwerke eingesetzt. Alkin-funktionalisierte Gelatine wurde mit vier verschiedenen Diazid-Quervernetzern oberhalb der Gel-Sol-Übergangstemperatur umgesetzt, um die Formierung tripelhelikaler Bereiche durch Gelatineketten zu unterdrücken. Durch Variation der Menge an Quervernetzer (und damit der Netzdichte) sowie der Länge und Flexibilität der Quervernetzer konnten u.a. die Quellung (Q: 150-470 vol.-%) sowie der Young’s - und Schermodul im kPa Bereich eingestellt werden (E: 50 kPa - 635 kPa, G’: 0.1 kPa - 16 kPa). Um die Netzwerkarchitektur zu verstehen, wurde eine Methode basierend auf dem Labeln unreagierter Azid- und Alkingruppen im Hydrogel entwickelt. Die Gelatine-basierten Hydrogele wurden mit Alkin-funktionalisiertem Fluorescein umgesetzt, um freie Azidgruppen zu detektieren, die bei einem Grafting entstehen. Darüber hinaus wurden die Hydrogele mit Azid-funktionalisiertem Fluorescein reagiert, um die Menge an freien Alkingruppen zu bestimmen, die zudem potentiell für die Anbindung bioaktiver Moleküle geeignet sind. Quervernetzung, Grafting, und die Anzahl freier Alkingruppen konnten dann mit Hilfe der konfokalen Laser Scanning Mikroskopie und der Fluoreszenzmikroskopie qualitativ und quantitativ nachgewiesen werden. Gegraftete Ketten wurden in Systemen nachgewiesen, die mit einem Überschuss an Quervernetzer hergestellt wurden, entstanden aber auch beim Einsatz äquimolarer Mengen Alkin- und Azidgruppen. Im letzteren Fall wurde in Abhängigkeit von der Struktur des Diazids unterschiedliche Anteile gegrafteter Ketten festgestellt. 0.1 mol-% von gegrafteten Ketten wurden für 4,4’-Diazido-2,2’-stilbendisulfonsäure gefunden, 0.06 mol-% für 1,8-Diazidooktan, 0.05 mol% für 1,12-diazidododecan und 0.022 mol-% für PEG-Diazid. Diese Beobachtung kann durch die unterschiedliche Flexibilität der Vernetzer erklärt werden. Während der Netzwerkbildung werden die Bewegungen der Gelatineketten eingeschränkt, so dass kovalente Netzpunkte nur erhalten werden können, wenn der Vernetzer lang und flexibel genug ist, um eine andere Alkingruppe zu erreichen. Die Strategie zur Synthese von Biopolymer-basierten Hydrogelen mit einstellbaren Eigenschaften wurde von Gelatine- auf Hyaluronsäure-basierte Gele übertragen. Alkin-funktionalisierte Hyaluronäure wurde mit drei verschiedenen Diaziden quervernetzt, wobei Menge, Länge, und Flexibilität des Quervernetzers variiert wurden. In dieser Weise wurden sehr weiche Hydrogele mit E-Moduli im Bereich von 0.5-3 kPa hergestellt. Die Variation der Vernetzungsdichte und des Vernetzertyps beeinflusste weiterhin den hydrolytischen und enzymatischen Abbau der Hydrogele. Hydrogele mit einem geringerem Anteil an Quervernetzer wurden schneller abgebaut als solche mit einem höheren Quervernetzeranteil. Darüber hinaus konnte gezeigt werden, dass Hydrogele mit Quervernetzern mit einer rigiden Struktur deutlich langsamer degradierten als Hydrogele mit flexibleren Quervernetzern. Während des hydrolytischen Abbau wurden die Materialien weicher, behielten aber ihre Form bei, was mit einem Bulk-Abbau-Modell übereinstimmt. Während des enzymatischen Abbaus hingegen änderten sich die Materialeigenschaften kaum, jedoch wurden die Proben kleiner. Diese Beobachtung stimmt mit einem Oberflächenabbaumechanismus überein. Da in allen vorgestellten Systemen nur eine kleine Menge synthetischer Vernetzer eingesetzt wurde (0.002 – 0.02 mol%), können die Materialien noch als Biopolymer-basierte Materialien klassifiziert werden. Jedoch enthalten die Materialien synthetische Abschnitte. In Zukunft könnte es interessant sein, einen Zugang zu Materialien zu haben, die ausschließlich aus Biopolymeren aufgebaut sind. Daher wurde der Zugang zu Biopolymer basierten Telechelen untersucht, die potentiell als Vernetzer dienen können. Dazu wurden durch die kontrollierte Spaltung von Gelatine mit Hydroxylamin Gelatinefragmente mit definiertem Molekulargewicht hergestellt. Hydroxalamin reagiert unter Spaltung mit der Amidbindung zwischen Asparagin und Glycin, wobei Aspartylhydroxamate und Aminoendgruppen entstehen. Die Reaktion von Gelatine mit Hydroxylamin ergab Fragmente mit Molekulargewichten von 15, 25, 37, und 50 kDa (bestimmt mit SDS-PAGE), und die Formierung dieser Fragmente war unabhängig von den weiteren Reaktionsbedingungen und der Reaktionszeit. Jedes dieser Fragmente kann potentiell für die Synthese von Hydrogelen eingesetzt werden, die ausschließlich aus Biopolymeren bestehen. KW - Klickchemie KW - Gelatine KW - Hyaluronsäure KW - Abbau KW - Kollagenase KW - Click Chemistry KW - Gelatin KW - Hyaluronic acid KW - Degradation KW - Collagenase Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59865 ER - TY - JOUR A1 - Piluso, Susanna A1 - Hiebl, Bernhard A1 - Gorb, Stanislav N. A1 - Kovalev, Alexander A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties JF - The international journal of artificial organs N2 - Biopolymers of the extracellular matrix are attractive starting materials for providing degradable and biocompatible biomaterials. In this study, hyaluronic acid-based hydrogels with tunable mechanical properties were prepared by the use of copper-catalyzed azide-alkyne cycloaddition (known as "click chemistry"). Alkyne-functionalized hyaluronic acid was crosslinked with linkers having two terminal azide functionalities, varying crosslinker density as well as the lengths and rigidity of the linker molecules. By variation of the crosslinker density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-4 kPa were prepared. The washed materials contained a maximum of 6.8 mg copper per kg dry weight and the eluate of the gel crosslinked with diazidostilbene did not show toxic effects on L929 cells. The hyaluronic acid-based hydrogels have potential as biomaterials for cell culture or soft tissue regeneration applications. KW - Biomaterial KW - Hydrogel KW - Hyaluronic acid KW - Microindentation KW - Rheology Y1 - 2011 U6 - https://doi.org/10.5301/IJAO.2011.6394 SN - 0391-3988 VL - 34 IS - 2 SP - 192 EP - 197 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Piluso, Susanna A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Enzymatic action as switch of bulk to surface degradation of clicked gelatin-based networks JF - Polymers for advanced technologies N2 - Polymer degradation occurs under physiological conditions in vitro and in vivo, especially when bonds susceptible to hydrolysis are present in the polymer. Understanding of the degradation mechanism, changes of material properties over time, and overall rate of degradation is a necessary prerequisite for the knowledge-based design of polymers with applications in biomedicine. Here, hydrolytic degradation studies of gelatin-based networks synthesized by copper-catalyzed azide-alkyne cycloaddition reaction are reported, which were performed with or without addition of an enzyme. In all cases, networks with a stilbene as crosslinker proofed to be more resistant to degradation than when an octyl diazide was used. Without addition of an enzyme, the rate of degradation was ruled by the crosslinking density of the network and proceeded via a bulk degradation mechanism. Addition of Clostridium histolyticum collagenase resulted in a much enhanced rate of degradation, which furthermore occurred via surface erosion. The mesh size of the hydrogels (>7nm) was in all cases larger than the hydrodynamic radius of the enzyme (4.5nm) so that even in very hydrophilic networks with large mesh size enzymes may be used to induce a fast surface degradation mechanism. This observation is of general interest when designing hydrogels to be applied in the presence of enzymes, as the degradation mechanism and material performance are closely interlinked. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - Hydrogel KW - Biopolymer KW - Degradation Y1 - 2017 U6 - https://doi.org/10.1002/pat.3962 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1318 EP - 1324 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Piluso, Susanna A1 - Vukicevie, Radovan A1 - Nöchel, Ulrich A1 - Braune, Steffen A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation JF - European polymer journal N2 - While click chemistry reactions for biopolymer network formation are attractive as the defined reactions may allow good control of the network formation and enable subsequent functionalization, tailoring of gelatin network properties over a wide range of mechanical properties has yet to be shown. Here, it is demonstrated that copper-catalyzed alkyne-azide cycloaddition of alkyne functionalized gelatin with diazides gave hydrogel networks with properties tailorable by the ratio of diazide to gelatin and diazide rigidity. 4,4′-diazido-2,2′-stilbenedisulfonic acid, which has been used as rigid crosslinker, yielded hydrogels with Young’s moduli E of 50–390 kPa and swelling degrees Q of 150–250 vol.%, while the more flexible 1,8-diazidooctane resulted in hydrogels with E = 125–280 kPa and Q = 225–470 vol.%. Storage moduli could be varied by two orders of magnitude (G′ = 100–20,000 Pa). An indirect cytotoxicity test did not show cytotoxic properties. Even when employing 1:1 ratios of alkyne and azide moieties, the hydrogels were shown to contain both, unreacted alkyne groups on the gelatin backbone as well as dangling chains carrying azide groups as shown by reaction with functionalized fluorescein. The free groups, which can be tailored by the employed ratio of the reactants, are accessible for covalent attachment of drugs, as was demonstrated by functionalization with dexamethasone. The sequential network formation and functionalization with click chemistry allows access to multifunctional materials relevant for medical applications. KW - Click chemistry KW - Hydrogel KW - Polymer functionalization KW - Biopolymer KW - Rheology KW - Multifunctionality Y1 - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.01.017 SN - 0014-3057 SN - 1873-1945 VL - 100 SP - 77 EP - 85 PB - Elsevier CY - Oxford ER -