TY - JOUR A1 - Klose, Tim A1 - Chaparro, M. Carme A1 - Schilling, Frank A1 - Butscher, Christoph A1 - Klumbach, Steffen A1 - Blum, Philipp T1 - Fluid flow simulations of a large-scale borehole leakage experiment JF - Transport in Porous Media N2 - Borehole leakage is a common and complex issue. Understanding the fluid flow characteristics of a cemented area inside a borehole is crucial to monitor and quantify the wellbore integrity as well as to find solutions to minimise existing leakages. In order to improve our understanding of the flow behaviour of cemented boreholes, we investigated experimental data of a large-scale borehole leakage tests by means of numerical modelling using three different conceptual models. The experiment was performed with an autoclave system consisting of two vessels bridged by a cement-filled casing. After a partial bleed-off at the well-head, a sustained casing pressure was observed due to fluid flow through the cementsteel composite. The aim of our simulations is to investigate and quantify the permeability of the cement-steel composite. From our model results, we conclude that the flow occurred along a preferential flow path at the cement-steel interface. Thus, the inner part of the cement core was impermeable during the duration of the experiment. The preferential flow path can be described as a highly permeable and highly porous area with an aperture of about 5 mu m and a permeability of 3 . 10(-12) m(2) (3 Darcy). It follows that the fluid flow characteristics of a cemented area inside a borehole cannot be described using one permeability value for the entire cement-steel composite. Furthermore, it can be concluded that the quality of the cement and the filling process regarding the cement-steel interface is crucial to minimize possible well leakages. KW - borehole leakage KW - sustained casing pressure KW - permeability test KW - cement KW - modelling Y1 - 2020 U6 - https://doi.org/10.1007/s11242-020-01504-y SN - 0169-3913 SN - 1573-1634 VL - 136 IS - 1 SP - 125 EP - 145 PB - Springer CY - New York ER - TY - GEN A1 - Klose, Tim A1 - Chaparro, M. Carme A1 - Schilling, Frank A1 - Butscher, Christoph A1 - Klumbach, Steffen A1 - Blum, Philipp T1 - Fluid flow simulations of a large-scale borehole leakage experiment T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Borehole leakage is a common and complex issue. Understanding the fluid flow characteristics of a cemented area inside a borehole is crucial to monitor and quantify the wellbore integrity as well as to find solutions to minimise existing leakages. In order to improve our understanding of the flow behaviour of cemented boreholes, we investigated experimental data of a large-scale borehole leakage tests by means of numerical modelling using three different conceptual models. The experiment was performed with an autoclave system consisting of two vessels bridged by a cement-filled casing. After a partial bleed-off at the well-head, a sustained casing pressure was observed due to fluid flow through the cementsteel composite. The aim of our simulations is to investigate and quantify the permeability of the cement-steel composite. From our model results, we conclude that the flow occurred along a preferential flow path at the cement-steel interface. Thus, the inner part of the cement core was impermeable during the duration of the experiment. The preferential flow path can be described as a highly permeable and highly porous area with an aperture of about 5 mu m and a permeability of 3 . 10(-12) m(2) (3 Darcy). It follows that the fluid flow characteristics of a cemented area inside a borehole cannot be described using one permeability value for the entire cement-steel composite. Furthermore, it can be concluded that the quality of the cement and the filling process regarding the cement-steel interface is crucial to minimize possible well leakages. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1372 KW - borehole leakage KW - sustained casing pressure KW - permeability test KW - cement KW - modelling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-573539 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Rodriguez Piceda, Constanza A1 - Scheck Wenderoth, Magdalena A1 - Gomez Dacal, Maria Laura A1 - Bott, Judith A1 - Prezzi, Claudia Beatriz A1 - Strecker, Manfred T1 - Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The southern Central Andes (SCA) (between 27 degrees S and 40 degrees S) is bordered to the west by the convergent margin between the continental South American Plate and the oceanic Nazca Plate. The subduction angle along this margin is variable, as is the deformation of the upper plate. Between 33 degrees S and 35 degrees S, the subduction angle of the Nazca plate increases from sub-horizontal (< 5 degrees) in the north to relatively steep (similar to 30 degrees) in the south. The SCA contain inherited lithological and structural heterogeneities within the crust that have been reactivated and overprinted since the onset of subduction and associated Cenozoic deformation within the Andean orogen. The distribution of the deformation within the SCA has often been attributed to the variations in the subduction angle and the reactivation of these inherited heterogeneities. However, the possible influence that the thickness and composition of the continental crust have had on both short-term and long-term deformation of the SCA is yet to be thoroughly investigated. For our investigations, we have derived density distributions and thicknesses for various layers that make up the lithosphere and evaluated their relationships with tectonic events that occurred over the history of the Andean orogeny and, in particular, investigated the short- and long-term nature of the present-day deformation processes. We established a 3D model of lithosphere beneath the orogen and its foreland (29 degrees S-39 degrees S) that is consistent with currently available geological and geophysical data, including the gravity data. The modelled crustal configuration and density distribution reveal spatial relationships with different tectonic domains: the crystalline crust in the orogen (the magmatic arc and the main orogenic wedge) is thicker (similar to 55 km) and less dense (similar to 2900 kg/m(3)) than in the forearc (similar to 35 km, similar to 2975 kg/m(3)) and foreland (similar to 30 km, similar to 3000 kg/m(3)). Crustal thickening in the orogen probably occurred as a result of stacking of low-density domains, while density and thickness variations beneath the forearc and foreland most likely reflect differences in the tectonic evolution of each area following crustal accretion. No clear spatial relationship exists between the density distribution within the lithosphere and previously proposed boundaries of crustal terranes accreted during the early Paleozoic. Areas with ongoing deformation show a spatial correlation with those areas that have the highest topographic gradients and where there are abrupt changes in the average crustal-density contrast. This suggests that the short-term deformation within the interior of the Andean orogen and its foreland is fundamentally influenced by the crustal composition and the relative thickness of different crustal layers. A thicker, denser, and potentially stronger lithosphere beneath the northern part of the SCA foreland is interpreted to have favoured a strong coupling between the Nazca and South American plates, facilitating the development of a sub-horizontal slab. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1369 KW - Central andes KW - Lithospheric structure KW - Crustal density KW - Gravity KW - modelling KW - Subduction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-562628 SN - 1866-8372 IS - 7 ER - TY - JOUR A1 - Rodriguez Piceda, Constanza A1 - Scheck Wenderoth, Magdalena A1 - Gomez Dacal, Maria Laura A1 - Bott, Judith A1 - Prezzi, Claudia Beatriz A1 - Strecker, Manfred T1 - Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling JF - International journal of earth sciences N2 - The southern Central Andes (SCA) (between 27 degrees S and 40 degrees S) is bordered to the west by the convergent margin between the continental South American Plate and the oceanic Nazca Plate. The subduction angle along this margin is variable, as is the deformation of the upper plate. Between 33 degrees S and 35 degrees S, the subduction angle of the Nazca plate increases from sub-horizontal (< 5 degrees) in the north to relatively steep (similar to 30 degrees) in the south. The SCA contain inherited lithological and structural heterogeneities within the crust that have been reactivated and overprinted since the onset of subduction and associated Cenozoic deformation within the Andean orogen. The distribution of the deformation within the SCA has often been attributed to the variations in the subduction angle and the reactivation of these inherited heterogeneities. However, the possible influence that the thickness and composition of the continental crust have had on both short-term and long-term deformation of the SCA is yet to be thoroughly investigated. For our investigations, we have derived density distributions and thicknesses for various layers that make up the lithosphere and evaluated their relationships with tectonic events that occurred over the history of the Andean orogeny and, in particular, investigated the short- and long-term nature of the present-day deformation processes. We established a 3D model of lithosphere beneath the orogen and its foreland (29 degrees S-39 degrees S) that is consistent with currently available geological and geophysical data, including the gravity data. The modelled crustal configuration and density distribution reveal spatial relationships with different tectonic domains: the crystalline crust in the orogen (the magmatic arc and the main orogenic wedge) is thicker (similar to 55 km) and less dense (similar to 2900 kg/m(3)) than in the forearc (similar to 35 km, similar to 2975 kg/m(3)) and foreland (similar to 30 km, similar to 3000 kg/m(3)). Crustal thickening in the orogen probably occurred as a result of stacking of low-density domains, while density and thickness variations beneath the forearc and foreland most likely reflect differences in the tectonic evolution of each area following crustal accretion. No clear spatial relationship exists between the density distribution within the lithosphere and previously proposed boundaries of crustal terranes accreted during the early Paleozoic. Areas with ongoing deformation show a spatial correlation with those areas that have the highest topographic gradients and where there are abrupt changes in the average crustal-density contrast. This suggests that the short-term deformation within the interior of the Andean orogen and its foreland is fundamentally influenced by the crustal composition and the relative thickness of different crustal layers. A thicker, denser, and potentially stronger lithosphere beneath the northern part of the SCA foreland is interpreted to have favoured a strong coupling between the Nazca and South American plates, facilitating the development of a sub-horizontal slab. KW - Central andes KW - Lithospheric structure KW - Crustal density KW - Gravity KW - modelling KW - Subduction Y1 - 2020 U6 - https://doi.org/10.1007/s00531-020-01962-1 SN - 1437-3254 SN - 1437-3262 VL - 110 IS - 7 SP - 2333 EP - 2359 PB - Springer CY - New York ER - TY - THES A1 - Senftleben, Robin T1 - Earth's magnetic field over the last 1000 years N2 - To investigate the reliability and stability of spherical harmonic models based on archeo/-paleomagnetic data, 2000 Geomagnetic models were calculated. All models are based on the same data set but with randomized uncertainties. Comparison of these models to the geomagnetic field model gufm1 showed that large scale magnetic field structures up to spherical harmonic degree 4 are stable throughout all models. Through a ranking of all models by comparing the dipole coefficients to gufm1 more realistic uncertainty estimates were derived than the authors of the data provide. The derived uncertainty estimates were used in further modelling, which combines archeo/-paleomagnetic and historical data. The huge difference in data count, accuracy and coverage of these two very different data sources made it necessary to introduce a time dependent spatial damping, which was constructed to constrain the spatial complexity of the model. Finally 501 models were calculated by considering that each data point is a Gaussian random variable, whose mean is the original value and whose standard deviation is its uncertainty. The final model arhimag1k is calculated by taking the mean of the 501 sets of Gauss coefficients. arhimag1k fits different dependent and independent data sets well. It shows an early reverse flux patch at the core-mantle boundary between 1000 AD and 1200 AD at the location of the South Atlantic Anomaly today. Another interesting feature is a high latitude flux patch over Greenland between 1200 and 1400 AD. The dipole moment shows a constant behaviour between 1600 and 1840 AD. In the second part of the thesis 4 new paleointensities from 4 different flows of the island Fogo, which is part of Cape Verde, are presented. The data is fitted well by arhimag1k with the exception of the value at 1663 of 28.3 microtesla, which is approximately 10 microtesla lower than the model suggest. N2 - Um die Stabilität und Zuverlässigkeit von sphärisch harmonischen Erdmagnetfeldmodellen, die auf paleomagnetischen und archeomagnetischen Daten basieren zu untersuchen wurden 2000 Erdmagnetfeldmodelle berechnet. Jedes dieser Modelle berechnet sich aus Daten, die mit zufälligen Unsicherheiten in die Inversion eingehen. Ein Vergleich dieser Modelle zum historischen Erdmagnetfeldmodell gufm1 zeigt, dass großflächige magnetische Strukturen bis zum sphärischen harmonischen Grad 4 stabil in allen Modellen sind. Ein Ranking der 2000 Modelle wurde verwendet, um realistischere Fehlerabschätzungen der Daten zu bekommen, als die, die von den Autoren angebeben werden. Diese Fehlerabschätzungen werden für die weitere Modellierung benutzt, welche historische und paleo-/archeomagnetiche Daten kombiniert. Der große Unterschied in der Anzahl der Daten und der räumlichen Verteilung dieser sehr verschiedenen Datenquellen machte es notwendig, eine zeitabhängige räumliche Dämpfung einzuführen. Diese ist so konstruiert, dass die räumlich Komplexität des Modelles in einem bestimmten Zeitintervall festgelegt wird. 501 Modelle wurde berechnet, indem jeder Datenpunkt als gaußsche Zufallsvariable gesehen wird mit dem Originalwert als Mittelwert und die Fehlerabschätzung als Standardabweichung. Das finale Modell arhimag1k berechnet sich aus dem Mittelwert der Gaußkoeffizienten aller 501 Modelle. arhimag1k fittet verschiedene abhängige und unabhängige Datensätze gut. Es zeigt eine frühe Anomaly an der Kern-Mantel Grenze zwischen 1000 und 1200 AD an der Lokation, wo auch die heutige Südatlantische Anomaly liegt. Eine andere interessante Auffälligkeit ist eine starke radiale Magnetfeldkomponente an der Kern-Mantel Grenze zwischen 1200 und 1400 AD über Grönland. Das Dipolmoment zeigt ein konstantes Verhalten von 1600 bis 1840 AD. Im zweiten Teil der Arbeit werden 4 neue Paleointensitäten der Insel Fogo, welches Teil von Kap Verde ist, presentiert. Diese neuen Daten werden gut von dem Modell arhimag1k gefittet, außer der Wert von 1663 AD mit 28.3 mikrotesla , welcher etwa 10 mikrotesla niedriger ist, als das Modell zeigt. T2 - Erdmagnetfeld der letzten 1000 Jahre KW - Earth's magnetic field KW - archeomagnetism KW - paleomagnetism KW - modelling KW - spherical harmonics KW - Erdmagnetfeld KW - Archäomagnetismus KW - Paläomagnetismus KW - Modellierung KW - Kugelflächenfunktionen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473150 ER -