TY - JOUR A1 - Yuan, Jun-Xia A1 - Hou, Xin-Dong A1 - Barlow, Axel A1 - Preick, Michaela A1 - Taron, Ulrike H. A1 - Alberti, Federica A1 - Basler, Nikolas A1 - Deng, Tao A1 - Lai, Xu-Long A1 - Hofreiter, Michael A1 - Sheng, Gui-Lian T1 - Molecular identification of late and terminal Pleistocene Equus ovodovi from northeastern China JF - PLOS ONE N2 - The extant diversity of horses (family Equidae) represents a small fraction of that occurring over their evolutionary history. One such lost lineage is the subgenus Sussemionus, which is thought to have become extinct during the Middle Pleistocene. However, recent molecular studies and morphological analysis have revealed that one of their representatives, E. ovodovi, did exist in Siberia during the Late Pleistocene. Fossil materials of E. ovodovi have thus far only been found in Russia. In this study, we extracted DNA from three equid fossil specimens excavated from northeastern China dated at 12,770-12,596, 29,525-28,887 and 40,201-38,848 cal. yBP, respectively, and retrieved three near-complete mitochondrial genomes from the specimens. Phylogenetic analyses cluster the Chinese haplotypes together with previously published Russian E. ovodovi, strongly supporting the assignment of these samples to this taxon. The molecular identification of E. ovodovi in northeastern China extends the known geographical range of this fossil species by several thousand kilometers to the east. The estimated coalescence time of all E. ovodovi haplotypes is approximately 199 Kya, with the Chinese haplotypes coalescing approximately 130 Kya. With a radiocarbon age of 12,770-12,596 cal. yBP, the youngest sample in this study represents the first E. ovodovi sample dating to the terminal Pleistocene, moving the extinction date of this species forwards considerably compared to previously documented fossils. Overall, comparison of our three mitochondrial genomes with the two published ones suggests a genetic diversity similar to several extant species of the genus Equus. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0216883 SN - 1932-6203 VL - 14 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Yuan, Junxia A1 - Sheng, Guilian A1 - Preick, Michaela A1 - Sun, Boyang A1 - Hou, Xindong A1 - Chen, Shungang A1 - Taron, Ulrike Helene A1 - Barlow, Axel A1 - Wang, Linying A1 - Hu, Jiaming A1 - Deng, Tao A1 - Lai, Xulong A1 - Hofreiter, Michael T1 - Mitochondrial genomes of Late Pleistocene caballine horses from China belong to a separate clade JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - There were several species of Equus in northern China during the Late Pleistocene, including Equus przewalskii and Equus dalianensis. A number of morphological studies have been carried out on E. przewalskii and E. dalianensis, but their evolutionary history is still unresolved. In this study, we retrieved near-complete mitochondrial genomes from E. dalianensis and E. przewalskii specimens excavated from Late Pleistocene strata in northeastern China. Phylogenetic analyses revealed that caballoid horses were divided into two subclades: the New World and the Old World caballine horse subclades. The Old World caballine horses comprise of two deep phylogenetic lineages, with modern and ancient Equus caballus and modern E. przewalskii forming lineage I, and the individuals in this study together with one Yakut specimen forming lineage II. Our results indicate that Chinese Late Pleistocene caballoid horses showed a closer relationship to other Eurasian caballine horses than that to Pleistocene horses from North America. In addition, phylogenetic analyses suggested a close relationship between E. dalianensis and the Chinese fossil E. przewalskii, in agreement with previous researches based on morphological analyses. Interestingly, E. dalianensis and the fossil E. przewalskii were intermixed rather than split into distinct lineages, suggesting either that gene flow existed between these two species or that morphology-based species assignment of palaeontological specimens is not always correct. Moreover, Bayesian analysis showed that the divergence time between the New World and the Old World caballoid horses was at 1.02 Ma (95% CI: 0.86-1.24 Ma), and the two Old World lineages (I & II) split at 0.88 Ma (95% CI: 0.69-1.13 Ma), which indicates that caballoid horses seem to have evolved into different populations in the Old World soon after they migrated from North America via the Bering Land Bridge. Finally, the TMRCA of E. dalianensis was estimated at 0.20 Ma (95% CI: 0.15-0.28 Ma), and it showed a relative low genetic diversity compared with other Equus species. KW - Equus dalianensis KW - Equus przewalskii KW - Pleistocene caballine horses KW - ancient DNA KW - phylogenetic relationship KW - divergence time Y1 - 2020 U6 - https://doi.org/10.1016/j.quascirev.2020.106691 SN - 0277-3791 VL - 250 PB - Elsevier CY - Amsterdam [u.a.] ER -