TY - JOUR A1 - Heim, Ramona J. A1 - Hölzel, Norbert A1 - Heinken, Thilo A1 - Kamp, Johannes A1 - Thomas, Alexander A1 - Darman, Galina F. A1 - Smirenski, Sergei M. A1 - Heim, Wieland T1 - Post-burn and long-term fire effects on plants and birds in floodplain wetlands of the Russian Far East JF - Biodiversity and conservation N2 - Wildfires affect biodiversity at multiple levels. While vegetation is directly changed by fire events, animals are often indirectly affected through changes in habitat and food availability. Globally, fire frequency and the extent of fires are predicted to increase in the future. The impact of fire on the biodiversity of temperate wetlands has gained little attention so far. We compared species richness and abundance of plants and birds in burnt and unburnt areas in the Amur floodplain/Russian Far East in the year of fire and 1 year after. We also analysed vegetation recovery in relation to time since fire over a period of 18 years. Plant species richness was higher in burnt compared to unburnt plots in the year of the fire, but not in the year after. This suggests that fire has a positive short-term effect on plant diversity. Bird species richness and abundance were lower on burnt compared to unburnt plots in the year of the fire, but not in the year after. Over a period of 18 years, high fire frequency led to an increase in herb cover and a decrease in grass cover. We show that the effects on biodiversity are taxon- and species-specific. Fire management strategies in temperate wetlands should consider fire frequency as a key driving force of vegetation structure, with carry-over effects on higher trophic levels. Designing fire refuges, i.e., areas that do not burn annually, might locally be necessary to maintain high species richness. KW - Disturbance KW - Bird species richness KW - Vegetation structure KW - Fire frequency KW - Amur River Y1 - 2019 U6 - https://doi.org/10.1007/s10531-019-01746-3 SN - 0960-3115 SN - 1572-9710 VL - 28 IS - 6 SP - 1611 EP - 1628 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Plue, Jan A1 - De Frenne, Pieter A1 - Acharya, Kamal A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente J. A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Kolb, Annette A1 - Lemke, Isgard A1 - Liira, Jaan A1 - Naaf, Tobias A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Cousins, Sara A. O. T1 - Where does the community start, and where does it end? BT - including the seed bank to reassess forest herb layer responses to the environment JF - Journal of vegetation science N2 - QuestionBelow-ground processes are key determinants of above-ground plant population and community dynamics. Still, our understanding of how environmental drivers shape plant communities is mostly based on above-ground diversity patterns, bypassing below-ground plant diversity stored in seed banks. As seed banks may shape above-ground plant communities, we question whether concurrently analysing the above- and below-ground species assemblages may potentially enhance our understanding of community responses to environmental variation. LocationTemperate deciduous forests along a 2000km latitudinal gradient in NW Europe. MethodsHerb layer, seed bank and local environmental data including soil pH, canopy cover, forest cover continuity and time since last canopy disturbance were collected in 129 temperate deciduous forest plots. We quantified herb layer and seed bank diversity per plot and evaluated how environmental variation structured community diversity in the herb layer, seed bank and the combined herb layer-seed bank community. ResultsSeed banks consistently held more plant species than the herb layer. How local plot diversity was partitioned across the herb layer and seed bank was mediated by environmental variation in drivers serving as proxies of light availability. The herb layer and seed bank contained an ever smaller and ever larger share of local diversity, respectively, as both canopy cover and time since last canopy disturbance decreased. Species richness and -diversity of the combined herb layer-seed bank community responded distinctly differently compared to the separate assemblages in response to environmental variation in, e.g. forest cover continuity and canopy cover. ConclusionsThe seed bank is a below-ground diversity reservoir of the herbaceous forest community, which interacts with the herb layer, although constrained by environmental variation in e.g. light availability. The herb layer and seed bank co-exist as a single community by means of the so-called storage effect, resulting in distinct responses to environmental variation not necessarily recorded in the individual herb layer or seed bank assemblages. Thus, concurrently analysing above- and below-ground diversity will improve our ecological understanding of how understorey plant communities respond to environmental variation. KW - Above-ground KW - Below-ground KW - Canopy KW - Disturbance KW - Diversity KW - Light availability KW - NWEurope KW - Plant community KW - Species co-existence KW - Storage effect Y1 - 2017 U6 - https://doi.org/10.1111/jvs.12493 SN - 1100-9233 SN - 1654-1103 VL - 28 IS - 2 SP - 424 EP - 435 PB - Wiley CY - Hoboken ER -