TY - THES A1 - Schmidtke, Andrea T1 - Biodiversity effects on the performance of terrestrial plant and phytoplankton communities T1 - Der Effekt der Biodiversität auf die Performance von terrestrischen Pflanzen und Phytoplankton-Gemeinschaften N2 - Die Ökosysteme unserer Erde sind durch das rasante Artensterben infolge von Umweltveränderungen durch den Menschen und des globalen Klimawandels stark betroffen. Mit den Auswirkungen dieses Artenverlustes und der damit einhergehenden Veränderung der Diversität beschäftigt sich die heutige Biodiversitätsforschung. Spezieller wird der Effekt der Diversität auf Ökosystemprozesse wie beispielsweise den Biomasseaufbau von Primärproduzenten oder der Resistenz einer Gemeinschaft gegen die Einwanderung neuer Arten untersucht. Die Quantifizierung des Einflusses der Diversität auf die Primärproduktion und das Verständnis der zugrunde liegenden Mechanismen ist von besonderer Wichtigkeit. In terrestrischen Pflanzengemeinschaften wurde bereits ein positiver Diversitätseffekt auf die Gemeinschaftsbiomasse beobachtet. Dies wird hauptsächlich durch den Komplementaritäts- und/oder den Dominanzeffekt erklärt. Die Komplementarität zwischen Arten ist beispielsweise bei Unterschieden in der Ressourcenausnutzung gegeben (z.B. unterschiedliche Wurzeltiefen). Diese kann zu einer besseren Nährstoffausnutzung in diverseren Gemeinschaften führen, die letztlich deren höhere Biomassen erklärt. Der Dominanzeffekt hingegen beruht auf der in diverseren Gemeinschaften höheren Wahrscheinlichkeit, eine hochproduktive Art anzutreffen, was letztlich die höhere Biomasse der Gemeinschaft verursacht. Diversitätseffekte auf Ökosystemprozesse wurden bisher hauptsächlich auf der Gemeinschaftsebene untersucht. Analysen über die Reaktionen, die alle Arten einer Gemeinschaft einschließen, fehlen bisher. Daher wurde der Einfluss der Diversität auf die individuelle Performance von Pflanzenarten innerhalb des Biodiversitätsprojektes „Das Jena Experiment“ untersucht. Dieses Experiment umfasst 60 Arten, die charakteristisch für Mitteleuropäische Graslandschaften sind. Die Arten wurden in die 4 funktionellen Gruppen Gräser, kleine Kräuter, große Kräuter und Leguminosen eingeteilt. Im Freilandversuch zeigte sich, dass mit steigender Artenzahl die individuelle Pflanzenhöhe zunahm, während die individuelle oberirdische Biomasse sank. Der positive Diversitätseffekt auf die pflanzliche Gemeinschaftsbiomasse kann folglich nicht auf der individuellen oberirdischen Biomassezunahme beruhen. Überdies reagierten die einzelnen funktionellen Gruppen und sogar die einzelnen Arten innerhalb einer funktionellen Gruppe unterschiedlich auf Diversitätsveränderungen. Folglich ist zu vermuten, dass einige Ökosystemprozesse auf Gemeinschaftsebene durch die Reaktionen von bestimmten funktionellen Gruppen bzw. Arten hervorgerufen werden. Diversitätseffekte auf Gemeinschaftsbiomassen wurden bislang hauptsächlich mit terrestrischen Pflanzen und weniger mit frei-schwebenden Algenarten (Phytoplankton) erforscht. Demzufolge wurde der Einfluss der Diversität auf die Biomasse von Phytoplankton-Gemeinschaften experimentell untersucht, wobei es sowohl zu negativen als auch positiven Diversitätseffekten kam. Eine negative Beziehung zwischen Diversität und Gemeinschaftsbiomasse zeigte sich, wenn schnell-wüchsige Algenarten nur geringe Biomassen in Mono- und Mischkultur aufbauten. Die vorhandenen Nährstoffe in der Mischkultur wurden von den schnell-wüchsigen Arten monopolisiert und folglich standen sie den langsam-wüchsigen Algenarten, welche viel Biomasse in Monokultur aufbauten, nicht mehr zur Verfügung. Zu einem positiven Diversitätseffekt auf die Gemeinschaftsbiomasse kam es, wenn die Artengemeinschaft eine positive Beziehung zwischen Wachstumsrate und Biomasse in Monokultur zeigte, sodass die schnell-wüchsige Algenarten viel Biomasse aufbauten. Da diese schnell-wüchsigen Algen in der Mischkultur dominant wurden, bestand die Gemeinschaft letztlich aus hoch-produktiven Algenarten, was zu einer erhöhten Gesamtbiomasse führte. Diese beiden Versuchsansätze verdeutlichen Mechanismen für die unterschiedlichen Reaktionen der Gemeinschaften auf Diversitätsveränderungen, welche auch für terrestrische Pflanzengemeinschaften gefunden wurden. Ein anderer wichtiger Ökosystemprozess, der von der Diversität beeinflusst wird, ist die Anfälligkeit von Gemeinschaften gegenüber invasiven Arten (Invasibilität). Die Invasibilität wird von einer Vielzahl von Faktoren beeinflusst und demzufolge wurde der Effekt der Diversität und der Produktivität (Nährstoffgehalt) auf die Invasibilität von Phytoplankton-Gemeinschaften in An- und Abwesenheit eines Herbivoren untersucht. Die zwei funktionell unterschiedlichen invasiven Arten waren die Blaualge Cylindrospermopsis raciborskii (schlecht fressbar) und der Phytoflagellat Cryptomonas sp. (gut fressbar). Es zeigte sich, dass der Fraßdruck, welcher selber durch die Produktivität beeinflusst wurde, einen bedeutenden Effekt auf die Invasibilität von Phytoplankton-Gemeinschaften hat. Die funktionellen Eigenschaften der invasiven und residenten Arten waren zudem bedeutender als die Artenzahl. N2 - To date, positive relationships between diversity and community biomass have been mainly found, especially in terrestrial ecosystems due to the complementarity and/or dominance effect. In this thesis, the effect of diversity on the performance of terrestrial plant and phytoplankton communities was investigated to get a better understanding of the underlying mechanisms in the biodiversity-ecosystem functioning context. In a large grassland biodiversity experiment, the Jena Experiment, the effect of community diversity on the individual plant performance was investigated for all species. The species pool consisted of 60 plant species belonging to 4 functional groups (grasses, small herbs, tall herbs, legumes). The experiment included 82 large plots which differed in species richness (1-60), functional richness (1-4), and community composition. Individual plant height increased with increasing species richness suggesting stronger competition for light in more diverse communities. The aboveground biomass of the individual plants decreased with increasing species richness indicating stronger competition in more species-rich communities. Moreover, in more species-rich communities plant individuals were less likely to flower out and had fewer inflorescences which may be resulting from a trade-off between resource allocation to vegetative height growth and to reproduction. Responses to changing species richness differed strongly between functional groups and between species of similar functional groups. To conclude, individual plant performance can largely depend on the diversity of the surrounding community. Positive diversity effects on biomass have been mainly found for substrate-bound plant communities. Therefore, the effect of diversity on the community biomass of phytoplankton was studied using microcosms. The communities consisted of 8 algal species belonging to 4 functional groups (green algae, diatoms, cyanobacteria, phytoflagellates) and were grown at different functional richness levels (1-4). Functional richness and community biomass were negatively correlated and all community biomasses were lower than their average monoculture biomasses of the component species, revealing community underyielding. This was mainly caused by the dominance of a fast-growing species which built up low biomasses in monoculture and mixture. A trade-off between biomass and growth rate in monoculture was found for all species, and thus fast-growing species built up low biomasses and slow-growing species reached high biomasses in monoculture. As the fast-growing, low-productive species monopolised nutrients in the mixtures, they became the dominant species resulting in the observed community underyielding. These findings suggest community overyielding when biomasses of the component species are positively correlated with their growth rates in monocultures. Aquatic microcosm experiments with an extensive design were performed to get a broad range of community responses. The phytoplankton communities differed in species diversity (1, 2, 4, 8, and 12), functional diversity (1, 2, 3, and 4) and community composition. The species/functional diversity positively affected community biomass, revealing overyielding in most of the communities. This was mainly caused by a positive complementarity effect which can be attributed to resource use complementarity and/or facilitative interaction among the species. Overyielding of more diverse communities occurred when the biomass of the component species was correlated positively with their growth rates in monoculture and thus, fast-growing and high-productive species were dominant in mixtures. This and the study mentioned above generated an emergent pattern for community overyielding and underyielding from the relationship between biomass and growth rate in monoculture as long as the initial community structure prevailed. Invasive species can largely affect ecosystem processes, whereas invasion is also influenced by diversity. To date, studies revealed negative and positive diversity effects on the invasibility (susceptibility of a community to the invasion by new species). The effect of productivity (nutrient concentration ranging from 10 to 640 µg P L-1), herbivory (presence/absence of the generalist feeder) and diversity (3, 4, 6 species were randomly chosen from the resident species pool) on the invasibility of phytoplankton communities consisting of 10 resident species was investigated using semi-continuous microcosms. Two functionally diverse invaders were chosen: the filamentous and less-edible cynaobacterium C. raciborskii and the unicellular and well-edible phytoflagellate Cryptomonas sp. The phytoflagellate indirectly benefited from grazing pressure of herbivores whereas C. raciborskii suffered more from it. Diversity did not affect the invasibility of the phytoplankton communities. Rather, it was strongly influenced by the functional traits of the resident and invasive species. KW - Artenzahl KW - funktionelle Diversität KW - Ökosystemfunktion KW - Performance KW - Primärproduzenten KW - Species number KW - functional diversity KW - ecosystem functioning KW - performance KW - primary producer Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-38936 ER - TY - JOUR A1 - Schmidtke, Andrea A1 - Bell, Elanor M. A1 - Weithoff, Guntram T1 - Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake N2 - Flagellates are important bacterial grazers in most planktonic food webs. The prey-size preference of the mixotrophic flagellate, Ochromonas sp. (Chrysophyceae), isolated from an extremely acidic lake, Lake 111 (pH 2.6), was determined using fluorescently labelled microspheres (beads). According to grazing experiments with cultured bacteria, also isolated from Lake 111, the potential grazing impact on Lake 111"s single-celled bacterial production was calculated. Ochromonas sp. ingested the smallest beads offered (0.5 µm diameter) at the highest rate. Ingestion rate declined with increasing bead size. The highest prey volume-specific ingestion was measured for Ochromonas sp. feeding on intermediate-sized beads (1.9 µm). Ingestion rates were low due in part to the large fraction of inactive flagellates observed. According to the bacterial ingestion rate, a mean of 88% (epilimnion) and 68% (hypolimnion) of in situ single- celled bacterial production is potentially grazed daily by Ochromonas sp. In the epilimnion of Lake 111, the heterotrophic carbon gain is three times higher than the autotrophic production. Alongside carbon uptake, Ochromonas sp. also benefits from ingesting bacteria through the uptake of phosphorus. A biovolume minimum corresponding to the prey size at which Ochromonas sp. feeds most efficiently occurred in the Lake 111 epilimnetic bacterial community, implying top-down control of the bacterial community by Ochromonas sp. Y1 - 2006 UR - http://plankt.oxfordjournals.org/content/28/11/991.full U6 - https://doi.org/10.1093/plankt/fbl034 SN - 0142-7873 SN - 1464-3774 VL - 28 IS - 11 SP - 991 EP - 1001 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Schmidtke, Andrea A1 - Gaedke, Ursula A1 - Weithoff, Guntram T1 - A mechanistic basis for underyielding in phytoplankton communities N2 - Species richness has been shown to increase biomass production of plant communities. Such overyielding occurs when a community performs better than its component monocultures due to the complementarity or dominance effect and is mostly detected in substrate-bound plant communities (terrestrial plants or submerged macrophytes) where resource use complementarity can be enhanced due to differences in rooting architecture and depth. Here, we investigated whether these findings arc generalizeable for free-floating phytoplankton with little potential for spatial differences in resource use. We performed aquatic microcosm experiments with eight phytoplankton species belonging to four functional groups to determine the manner in which species and community biovolume varies in relation to the number of functional groups and hypothesized that an increasing number of functional groups within a community promotes overyielding. Unexpectedly, we did not detect overyielding in any algal community. Instead. total community biovolume tended to decrease with all increasing, number of functional groups. This underyielding was mainly caused by the negative dominance effect that originated from a trade-off between growth rate and filial biovolume. In monoculture, slow-groing species built up higher biovolumes that fast-growing ones, whereas in mixture a fast-growing but low-productive species monopolized most of the nutrients and prevented competing species from developing high biovolumes expected from monocultures. Our results indicated that the Magnitude of the community biovolume was largely determined by the identify of one species. Functional diversity and resource use complementarity were of minor Importance among free-floating phytoplankton, possibly reflecting the lack of spatially heterogeneous resource distribution. As a consequence, biodiversity-ecosystem functioning relationships may not be easily generalizeable from substrate-bound plant to phytoplankton communities and vice versa. Y1 - 2010 UR - http://www.esajournals.org/doi/full/10.1890/08-2370.1 SN - 0012-9658 ER - TY - JOUR A1 - Schmidtke, Andrea A1 - Rottstock, Tanja A1 - Gaedke, Ursula A1 - Fischer, Markus T1 - Plant community diversity and composition affect individual plant performance N2 - Effects of plant community diversity on ecosystem processes have recently received major attention. In contrast, effects of species richness and functional richness on individual plant performance, and their magnitude relative to effects of community composition, have been largely neglected. Therefore, we examined height, aboveground biomass, and inflorescence production of individual plants of all species present in 82 large plots of the Jena Experiment, a large grassland biodiversity experiment in Germany. These plots differed in species richness (1-60), functional richness (1-4), and community composition. On average, in more species-rich communities, plant individuals grew taller, but weighed less, were less likely to flower, and had fewer inflorescences. In plots containing legumes, non-legumes were higher and weighed more than in plots without legumes. In plots containing grasses, non-grasses were less likely to flower than in plots without grasses. This indicates that legumes positively and grasses negatively affected the performance of other species. Species richness and functional richness effects differed systematically between functional groups. The magnitude of the increase in plant height with increasing species richness was greatest in grasses and was progressively smaller in legumes, small herbs, and tall herbs. Individual aboveground biomass responses to increasing species richness also differed among functional groups and were positive for legumes, less pronouncedly positive for grasses, negative for small herbs, and more pronouncedly negative for tall herbs. Moreover, these effects of species richness differed strongly between species within these functional groups. We conclude that individual plant performance largely depends on the diversity of the surrounding community, and that the direction and magnitude of the effects of species richness and functional richness differs largely between species. Our study suggests that diversity of the surrounding community needs to be taken into account when interpreting drivers of the performance of individual plants. Y1 - 2010 UR - http://www.springerlink.com/content/067x6r4n36w12184/fulltext.html U6 - https://doi.org/10.1007/s00442-010-1688-z SN - 0029-8549 ER - TY - JOUR A1 - Sperfeld, Erik A1 - Schmidtke, Andrea A1 - Gaedke, Ursula A1 - Weithoff, Guntram T1 - Productivity, herbivory, and species traits rather than diversity influence invasibility of experimental phytoplankton communities N2 - Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions. Y1 - 2010 UR - http://springerlink.metapress.com/content/100458/ U6 - https://doi.org/10.1007/s00442-010-1594-4 SN - 0029-8549 ER -