TY - GEN A1 - Witzel, Katja A1 - Neugart, Susanne A1 - Ruppel, Silke A1 - Schreiner, Monika A1 - Wiesner, Melanie A1 - Baldermann, Susanne T1 - Recent progress in the use of ‘omics technologies in brassicaceous vegetables T2 - Frontiers in plant science N2 - Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 429 KW - genomics KW - transcriptomics KW - metabolomics KW - proteomics KW - crop KW - microbiomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406479 ER - TY - GEN A1 - Westbury, Michael V. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Wiesel, Ingrid A1 - Leo, Viyanna A1 - Welch, Rebecca A1 - Parker, Daniel M. A1 - Sicks, Florian A1 - Ludwig, Arne A1 - Dalen, Love A1 - Hofreiter, Michael T1 - Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 589 KW - evolution KW - hyena KW - genomics KW - population genomics KW - diversity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414132 SN - 1866-8372 IS - 589 ER -