TY - GEN A1 - Bansard, Jennifer S. A1 - Pattberg, Philipp H. A1 - Widerberg, Oscar T1 - Cities to the rescue? BT - Assessing the performance of transnational municipal networks in global climate governance T2 - Postprints der Universität Potsdam Wirtschafts- und Sozialwissenschaftliche Reihe N2 - Despite the proliferation and promise of subnational climate initiatives, the institutional architecture of transnational municipal networks (TMNs) is not well understood. With a view to close this research gap, the article empirically assesses the assumption that TMNs are a viable substitute for ambitious international action under the United Nations Framework Convention on Climate Change (UNFCCC). It addresses the aggregate phenomenon in terms of geographical distribution, central players, mitigation ambition and monitoring provisions. Examining thirteen networks, it finds that membership in TMNs is skewed toward Europe and North America while countries from the Global South are underrepresented; that only a minority of networks commit to quantified emission reductions and that these are not more ambitious than Parties to the UNFCCC; and finally that the monitoring provisions are fairly limited. In sum, the article shows that transnational municipal networks are not (yet) the representative, ambitious and transparent player they are thought to be. T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 105 KW - climate change KW - cities and regions KW - urban politics KW - transnational networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429806 SN - 1867-5808 IS - 105 SP - 229 EP - 246 ER - TY - GEN A1 - Kellermann, Patric A1 - Bubeck, Philip A1 - Kundela, Günther A1 - Dosio, Alessandro A1 - Thieken, Annegret T1 - Frequency analysis of critical meteorological conditions in a changing climate BT - assessing future implications for railway transportation in Austria N2 - Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 358 KW - climate change KW - critical meteorological condition KW - frequency analysis KW - natural hazard management KW - railway transportation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400505 ER - TY - GEN A1 - Kormann, Christoph A1 - Bronstert, Axel A1 - Francke, Till A1 - Recknagel, Thomas A1 - Gräff, Thomas T1 - Model-Based attribution of high-resolution streamflow trends in two alpine basins of Western Austria N2 - Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to identify the trend drivers, i.e., to attribute the detected streamflow trends, given that the model captures all important processes causing the trends. We modelled the hydrological conditions for two alpine catchments in western Austria (a large, mostly lower-altitude catchment with wide valley plains and a nested high-altitude, glaciated headwater catchment) with the distributed, physically-oriented WaSiM-ETH model, which includes a dynamical glacier module. The model was calibrated in a transient mode, i.e., not only on several standard goodness measures and glacier extents, but also in such a way that the simulated streamflow trends fit with the observed ones during the investigation period 1980 to 2007. With this approach, it was possible to separate streamflow components, identify the trends of flow components, and study their relation to trends in atmospheric variables. In addition to trends in annual averages, highly resolved trends for each Julian day were derived, since they proved powerful in an earlier, data-based attribution study. We were able to show that annual and highly resolved trends can be modelled sufficiently well. The results provide a holistic, year-round picture of the drivers of alpine streamflow changes: Higher-altitude catchments are strongly affected by earlier firn melt and snowmelt in spring and increased ice melt throughout the ablation season. Changes in lower-altitude areas are mostly caused by earlier and lower snowmelt volumes. All highly resolved trends in streamflow and its components show an explicit similarity to the local temperature trends. Finally, results indicate that evapotranspiration has been increasing in the lower altitudes during the study period. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 364 KW - trend attribution KW - trend detection KW - climate change KW - trend drivers KW - hydrological modelling KW - alpine catchments KW - streamflow KW - hydroclimatology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400641 ER -