TY - JOUR A1 - Kersting, Sebastian A1 - Rausch, Valentina A1 - Bier, Frank Fabian A1 - von Nickisch-Rosenegk, Markus T1 - A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia JF - Analytical biochemistry : methods in the biological sciences N2 - Pneumonia is one of the most common and potentially lethal infectious conditions worldwide. Streptococcus pneumoniae is the pathogen most frequently associated with bacterial community-acquired pneumonia, while Legionella pneumophila is the major cause for local outbreaks of legionellosis. Both pathogens can be difficult to diagnose since signs and symptoms are nonspecific and do not differ from other causes of pneumonia. Therefore, a rapid diagnosis within a clinically relevant time is essential for a fast onset of the proper treatment. Although methods based on polymerase chain reaction significantly improved the identification of pathogens, they are difficult to conduct and need specialized equipment. We describe a rapid and sensitive test using isothermal recombinase polymerase amplification and detection on a disposable test strip. This method does not require any special instrumentation and can be performed in less than 20 min. The analytical sensitivity in the multiplex assay amplifying specific regions of S. pneumoniae and L. pneumophila simultaneously was 10 CFUs of genomic DNA per reaction. In cross detection studies with closely related strains and other bacterial agents the specificity of the RPA was confirmed. The presented method is applicable for near patient and field testing with a rather simple routine and the possibility for a read out with the naked eye. Y1 - 2018 U6 - https://doi.org/10.1016/j.ab.2018.04.014 SN - 0003-2697 SN - 1096-0309 VL - 550 SP - 54 EP - 60 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Laux, Eva-Maria A1 - Bier, Frank Fabian A1 - Hölzel, Ralph T1 - Dielectrophoretic Stretching of DNA JF - DNA Nanotechnology N2 - The spatial control of DNA and of self-assembled DNA constructs is a prerequisite for the preparation of DNA-based nanostructures and microstructures and a useful tool for studies on single DNA molecules. Here we describe a protocol for the accumulation of dissolved lambda-DNA molecules between planar microelectrodes by the action of inhomogeneous radiofrequency electric fields. The resulting AC electrokinetic forces stretch the DNA molecules and align them parallel to the electric field. The electrode preparation from off-the-shelf electronic components is explained, and a detailed description of the electronic setup is given. The experimental procedure is controlled in real-time by fluorescence microscopy. KW - Alignment KW - Dielectrophoresis KW - DNA KW - Electrokinetics KW - Interdigitated electrodes KW - Stretching Y1 - 2018 SN - 978-1-4939-8582-1 SN - 978-1-4939-8581-4 U6 - https://doi.org/10.1007/978-1-4939-8582-1_14 SN - 1064-3745 SN - 1940-6029 SP - 199 EP - 208 PB - Humana Press Inc. CY - New York ET - 2 ER - TY - JOUR A1 - Laux, Eva-Maria A1 - Bier, Frank Fabian A1 - Hölzel, Ralph T1 - Electrode-based AC electrokinetics of proteins BT - a mini-review JF - Bioelectrochemistry : official journal of the Bioelectrochemical Society ; an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry N2 - Employing electric phenomena for the spatial manipulation of bioparticles from whole cells down to dissolved molecules has become a useful tool in biotechnology and analytics. AC electrokinetic effects like dielectrophoresis and AC electroosmosis are increasingly used to concentrate, separate and immobilize DNA and proteins. With the advance of photolithographical micro- and nanofabrication methods, novel or improved bioanalytical applications benefit from concentrating analytes, signal enhancement and locally controlled immobilization by AC electrokinetic effects. In this review of AC electrokinetics of proteins, the respective studies are classified according to their different electrode geometries: individual electrode pairs, interdigitated electrodes, quadrupole electrodes, and 3D configurations of electrode arrays. Known advantages and disadvantages of each layout are discussed. KW - AC electrokinetics KW - Dielectrophoresis KW - Electrodes KW - Electroosmosis KW - Proteins Y1 - 2017 U6 - https://doi.org/10.1016/j.bioelechem.2017.11.010 SN - 1567-5394 SN - 1878-562X VL - 120 SP - 76 EP - 82 PB - Elsevier B.V. CY - Amsterdam ER - TY - JOUR A1 - Laux, Eva-Maria A1 - Ermilova, Elena A1 - Pannwitz, Daniel A1 - Gibbons, Jessica A1 - Hölzel, Ralph A1 - Bier, Frank Fabian T1 - Dielectric Spectroscopy of Biomolecules up to 110 GHz JF - Frequenz N2 - Radio-frequency fields in the GHz range are increasingly applied in biotechnology and medicine. In order to fully exploit both their potential and their risks detailed information about the dielectric properties of biological material is needed. For this purpose a measuring system is presented that allows the acquisition of complex dielectric spectra over 4 frequency decade up to 110 GHz. Routines for calibration and for data evaluation according to physicochemical interaction models have been developed. The frequency dependent permittivity and dielectric loss of some proteins and nucleic acids, the main classes of biomolecules, and of their sub-units have been determined. Dielectric spectra are presented for the amino acid alanine, the proteins lysozyme and haemoglobin, the nucleotides AMP and ATP, and for the plasmid pET-21, which has been produced by bacterial culture. Characterisation of a variety of biomolecules is envisaged, as is the application to studies on protein structure and function. KW - dielectric KW - spectroscopy KW - permittivity KW - protein KW - DNA KW - amino acid KW - plasmid Y1 - 2018 U6 - https://doi.org/10.1515/freq-2018-0010 SN - 0016-1136 SN - 2191-6349 VL - 72 IS - 3-4 SP - 135 EP - 140 PB - De Gruyter CY - Berlin ER -