TY - GEN A1 - Bergholz, Kolja A1 - Kober, Klarissa A1 - Jeltsch, Florian A1 - Schmidt, Kristina A1 - Weiß, Lina T1 - Trait means or variance BT - What determines plant species' local and regional occurrence in fragmented dry grasslands? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait-occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress-tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress-tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale-dependency of trait-abundance relationships. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1151 KW - LMA KW - niche width KW - plant functional trait KW - scale-dependency KW - species abundance KW - trait-environment relationship Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519905 SN - 1866-8372 SP - 3357 EP - 3365 ER - TY - GEN A1 - Bergholz, Kolja A1 - Sittel, Lara-Pauline A1 - Ristow, Michael A1 - Jeltsch, Florian A1 - Weiß, Lina T1 - Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60–3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140–400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500–3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1298 KW - hoverflies KW - landscape homogenization KW - plant functional trait KW - syrphids KW - wild bees Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577307 SN - 1866-8372 IS - 1298 ER - TY - GEN A1 - Fer, Istem A1 - Tietjen, Britta A1 - Jeltsch, Florian A1 - Wolff, Christian Michael T1 - The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario N2 - The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 394 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403853 ER - TY - GEN A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Pe'er, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research BT - exploring new avenues to address spatiotemporal biodiversity dynamics N2 - Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of ‘movement ecology’. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide ‘mobile links’ between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through ‘equalizing’ and ‘stabilizing’ mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 401 KW - mobile links KW - species coexistence KW - community dynamics KW - biodiversity conservation KW - long distance movement KW - landscape genetics KW - individual based modeling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401177 ER - TY - GEN A1 - Jeltsch, Florian A1 - Grimm, Volker A1 - Reeg, Jette A1 - Schlägel, Ulrike E. T1 - Give chance a chance BT - from coexistence to coviability in biodiversity theory T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - A large part of biodiversity theory is driven by the basic question of what allows species to coexist in spite of a confined number of niches. A substantial theoretical background to this question is provided by modern coexistence theory (MCT), which rests on mathematical approaches of invasion analysis to categorize underlying mechanisms into factors that reduce either niche overlap (stabilizing mechanisms) or the average fitness differences of species (equalizing mechanisms). While MCT has inspired biodiversity theory in the search for these underlying mechanisms, we feel that the strong focus on coexistence causes a bias toward the most abundant species and neglects the plethora of species that are less abundant and often show high local turnover. Given the more stochastic nature of their occurrence, we advocate a complementary cross-level approach that links individuals, small populations, and communities and explicitly takes into account (1) a more complete inclusion of environmental and demographic stochasticity affecting small populations, (2) intraspecific trait variation and behavioral plasticity, and (3) local heterogeneities, interactions, and feedbacks. Focusing on mechanisms that drive the temporary coviability of species rather than infinite coexistence, we suggest a new approach that could be dubbed coviability analysis (CVA). From a modeling perspective, CVA builds on the merged approaches of individual-based modeling and population viability analysis but extends them to the community level. From an empirical viewpoint, CVA calls for a stronger integration of spatiotemporal data on variability and noise, changing drivers, and interactions at the level of individuals. The resulting large volumes of data from multiple sources could be strongly supported by novel techniques tailored to the discovery of complex patterns in high-dimensional data. By complementing MCT through a stronger focus on the coviability of less common species, this approach can help make modern biodiversity theory more comprehensive, predictive, and relevant for applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 742 KW - behavioral plasticity KW - biodiversity KW - coexistence KW - community theory KW - coviability analysis KW - demographic noise KW - environmental noise KW - heterogeneity KW - individual-based modeling KW - intraspecific trait variation KW - modern coexistence theory KW - population viability analysis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435320 SN - 1866-8372 IS - 742 ER - TY - GEN A1 - Köchy, Martin A1 - Mathaj, Martin A1 - Jeltsch, Florian A1 - Malkinson, Dan T1 - Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes N2 - Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future. N2 - Kleinvieh ist eine wichtige Lebensgrundlage für die Landbevölkerung in trockenen Regionen. Wie stark wird sich der Klimawandel auf die Tragfähigkeit der Weideflächen auswirken? Wir benutzten hierarchische Modellierung, um das Wachstum von Sträuchern und einjährigen Kräutern, das wichtigste Futter für Ziegen und Schafe, quantitativ auf die Fläche von Landschaften in der östlichen Mittelmeerregion zu dimensionieren. Die Produktivität ohne Beweidung stieg sigmoidal mit dem mittleren Jahresniederschlag. Je trockener die Landschaft, desto stärker verminderte Beweidung die Produktion. An einem Punkt knapp unter der Tragfähigkeit der Vegetation, sank die Produktion stark mit zunehmender Beweidung, weil die Samenproduktion der Kräuter zu gering war. Wir wiederholten die Simulationen mit Niederschlagsverteilungsmustern gemäß zweier gegensätzlicher IPCC-Szenarien. Zukünftige Produktivität und Tragfähigkeit unterschieden sich in den meisten Fällen nicht von Ergebnissen auf Grund von historischer Niederschlagsverteilung. Allerdings war die zukünftige Produktivität in trockenen Habitaten der semiariden und trocken-mediterranen Regionen niedriger. Somit hat auch in Zukunft die Besatzdichte die größere Auswirkung auf die Produktivität dieser trockenen Landschaft als das Klima. "This abstract is provided by the authors, and is for convenience of the users only. The author certifies that the translation faithfully represents the official version in the language of the journal, which is the published Abstract of record and is the only Abstract to be used for reference and citation." T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 066 KW - topography KW - spatially explicit model KW - climate change KW - Middle East KW - stocking capacity Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18720 ER - TY - GEN A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Herbicide risk assessments of non-target terrestrial plant communities BT - A graphical user interface for the plant community model IBC-grass T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 874 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459997 SN - 1866-8372 IS - 874 ER - TY - GEN A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Simulation of herbicide impacts on a plant community BT - comparing model predictions of the plant community model IBC-grass to empirical data T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 528 KW - Plant community model KW - Non-target terrestrial plants KW - Community-level effects KW - Herbicide risk assessment KW - Individual-based modeling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423039 SN - 1866-8372 IS - 528 ER - TY - GEN A1 - Reeg, Jette A1 - Strigl, Lea A1 - Jeltsch, Florian T1 - Agricultural buffer zone thresholds to safeguard functional bee diversity: Insights from a community modeling approach T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1281 KW - agricultural landscape KW - buffer zones KW - community model KW - functional traits KW - solitary bees KW - spatially explicit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570800 SN - 1866-8372 IS - 1281 ER - TY - GEN A1 - Romero-Mujalli, Daniel A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats. Results The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats. Conclusions Given that 50% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become – at least locally – extinct. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 776 KW - Individual-based models KW - sexual species KW - Beneficial mutations KW - Mutation rate KW - Mutator locus KW - Directional climate change KW - Recombination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439058 SN - 1866-8372 IS - 776 ER - TY - GEN A1 - Romero-Mujalli, Daniel A1 - Rochow, Markus A1 - Kahl, Sandra M. A1 - Paraskevopoulou, Sofia A1 - Folkertsma, Remco A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Adaptive and nonadaptive plasticity in changing environments: Implications for sexual species with different life history strategies T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to- one genotype–phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual-based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directiona climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many-to- one genotype–phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation—compared to linear reaction norms and genetic determinism—even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations produing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1170 KW - developmental canalization KW - environmental change KW - genetic accommodation KW - Individual-based models KW - limits KW - many-to-one genotype–phenotype map KW - noise color KW - phenotypic plasticity KW - reaction norms KW - stochastic fluctuations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523201 SN - 1866-8372 IS - 1170 ER - TY - GEN A1 - Sieck, Mungla A1 - Ibisch, Pierre L. A1 - Moloney, Kirk A. A1 - Jeltsch, Florian T1 - Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change N2 - Background Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades. Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Results Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. Conclusion The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the scientific literature. It is particularly true that existing models have been underutilized in testing different management options under climate change. Based on these findings we suggest a strategic framework for more effectively incorporating the impact of climate change in models exploring the effectiveness of protected areas. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 368 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400894 ER - TY - GEN A1 - Sonnemann, Ilja A1 - Pfestorf, Hans A1 - Jeltsch, Florian A1 - Wurst, Susanne T1 - Community- weighted mean plant traits predict small scale distribution of insect root herbivore abundance T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive-and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 494 KW - Diabrotica Virgifera Virgifera KW - land-use intensity KW - functional traits KW - wireworms coloptera KW - spatial-distribution KW - Agriotes Ustulatus KW - population-dynamics KW - grassland diversity KW - european flora KW - arable land Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408161 SN - 1866-8372 IS - 494 ER - TY - GEN A1 - Weise, Hanna A1 - Auge, Harald A1 - Baessler, Cornelia A1 - Bärlund, Ilona A1 - Bennett, Elena M. A1 - Berger, Uta A1 - Bohn, Friedrich A1 - Bonn, Aletta A1 - Borchardt, Dietrich A1 - Brand, Fridolin A1 - Jeltsch, Florian A1 - Joshi, Jasmin Radha A1 - Grimm, Volker T1 - Resilience trinity BT - Safeguarding ecosystem functioning and services across three different time horizons and decision contexts T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1444 KW - concepts KW - ecosystems KW - ecosystem services provisioning KW - management KW - resilience Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515284 SN - 1866-8372 IS - 4 ER -