TY - GEN A1 - Francke, Till A1 - Förster, Saskia A1 - Brosinsky, Arlena A1 - Sommerer, Erik A1 - Lopez-Tarazon, Jose Andres A1 - Güntner, Andreas A1 - Batalla Villanueva, Ramon J. A1 - Bronstert, Axel T1 - Water and sediment fluxes in Mediterranean mountainous regions BT - comprehensive dataset for hydro-sedimentological analyses and modelling in a mesoscale catchment (River Isábena, NE Spain) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A comprehensive hydro-sedimentological dataset for the Isábena catchment, northeastern (NE) Spain, for the period 2010–2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Isábena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isábena catchment (445 km 2 ) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Isábena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 547 KW - source siscrimination KW - transport KW - pyrenees KW - connectivity KW - sischarge KW - runoff KW - yield Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419150 SN - 1866-8372 IS - 547 ER - TY - GEN A1 - Güntner, Andreas A1 - Reich, Marvin A1 - Mikolaj, Michal A1 - Creutzfeldt, Benjamin A1 - Schroeder, Stephan A1 - Wziontek, Hartmut T1 - Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85% of the gravity signal due to local water storage changes originating within a radius of 4000 and 200m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 663 KW - gravity measurements KW - local hydrology KW - storage changes KW - noise-levels KW - time KW - system KW - attraction KW - athmosphere KW - surface Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419105 SN - 1866-8372 IS - 663 ER - TY - GEN A1 - Heistermann, Maik A1 - Bogena, Heye A1 - Francke, Till A1 - Güntner, Andreas A1 - Jakobi, Jannis A1 - Rasche, Daniel A1 - Schrön, Martin A1 - Döpper, Veronika A1 - Fersch, Benjamin A1 - Groh, Jannis A1 - Patil, Amol A1 - Pütz, Thomas A1 - Reich, Marvin A1 - Zacharias, Steffen A1 - Zengerle, Carmen A1 - Oswald, Sascha Eric T1 - Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1272 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-567756 SN - 1866-8372 IS - 1272 SP - 2501 EP - 2519 ER - TY - GEN A1 - Singh, Alka A1 - Seitz, Florian A1 - Eicker, Annette A1 - Güntner, Andreas T1 - Water budget analysis within the surrounding of prominent lakes and reservoirs from multi-sensor earth observation data and hydrological models BT - case studies of the Aral Sea and Lake Mead T2 - remote sensing N2 - The hydrological budget of a region is determined based on the horizontal and vertical water fluxes acting in both inward and outward directions. These integrated water fluxes vary, altering the total water storage and consequently the gravitational force of the region. The time-dependent gravitational field can be observed through the Gravity Recovery and Climate Experiment (GRACE) gravimetric satellite mission, provided that the mass variation is above the sensitivity of GRACE. This study evaluates mass changes in prominent reservoir regions through three independent approaches viz. fluxes, storages, and gravity, by combining remote sensing products, in-situ data and hydrological model outputs using WaterGAP Global Hydrological Model (WGHM) and Global Land Data Assimilation System (GLDAS). The results show that the dynamics revealed by the GRACE signal can be better explored by a hybrid method, which combines remote sensing-based reservoir volume estimates with hydrological model outputs, than by exclusive model-based storage estimates. For the given arid/ semi-arid regions, GLDAS based storage estimations perform better than WGHM. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 453 KW - GRACE KW - water budget KW - reservoir KW - water fluxes KW - GLDAS KW - WGHM KW - Aral Sea KW - Lake Mead Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407902 ER -