TY - GEN A1 - Bald, Ilko A1 - Keller, Adrian T1 - Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1146 KW - DNA origami KW - atomic force microscopy KW - single-molecule analysis KW - DNA radiation damage KW - protein binding KW - enzyme reactions KW - G quadruplexes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475843 SN - 1866-8372 IS - 9 SP - 13803 EP - 13823 ER - TY - GEN A1 - Bald, Ilko A1 - Kopyra, Janina A1 - Keller, Adrian T1 - On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy N2 - Gemcitabine (2′,2′-difluorocytidine) is a well-known radiosensitizer routinely applied in concomitant chemoradiotherapy. During irradiation of biological media with high-energy radiation secondary low-energy (<10 eV) electrons are produced that can directly induce chemical bond breakage in DNA by dissociative electron attachment (DEA). Here, we investigate and compare DEA to the three molecules 2′-deoxycytidine, 2′-deoxy-5-fluorocytidine, and gemcitabine. Fluorination at specific molecular sites, i.e., nucleobase or sugar moiety, is found to control electron attachment and subsequent dissociation pathways. The presence of two fluorine atoms at the sugar ring results in more efficient electron attachment to the sugar moiety and subsequent bond cleavage. For the formation of the dehydrogenated nucleobase anion, we obtain an enhancement factor of 2.8 upon fluorination of the sugar, whereas the enhancement factor is 5.5 when the nucleobase is fluorinated. The observed fragmentation reactions suggest enhanced DNA strand breakage induced by secondary electrons when gemcitabine is incorporated into DNA. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 167 KW - low-energy electrons KW - single-strand breaks KW - gas-phase KW - chemoradiation therapy KW - molecular-mechanisms KW - resonant formation KW - damage KW - attachment KW - drugs Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73412 SP - 6825 EP - 6829 ER - TY - GEN A1 - Büchele, Dominique A1 - Chao, Madlen A1 - Ostermann, Markus A1 - Leenen, Matthias A1 - Bald, Ilko T1 - Multivariate chemometrics as a key tool for prediction of K and Fe in a diverse German agricultural soil-set using EDXRF T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Within the framework of precision agriculture, the determination of various soil properties is moving into focus, especially the demand for sensors suitable for in-situ measurements. Energy-dispersive X-ray fluorescence (EDXRF) can be a powerful tool for this purpose. In this study a huge diverse soil set (n = 598) from 12 different study sites in Germany was analysed with EDXRF. First, a principal component analysis (PCA) was performed to identify possible similarities among the sample set. Clustering was observed within the four texture classes clay, loam, silt and sand, as clay samples contain high and sandy soils low iron mass fractions. Furthermore, the potential of uni- and multivariate data evaluation with partial least squares regression (PLSR) was assessed for accurate determination of nutrients in German agricultural samples using two calibration sample sets. Potassium and iron were chosen for testing the performance of both models. Prediction of these nutrients in 598 German soil samples with EDXRF was more accurate using PLSR which is confirmed by a better overall averaged deviation and PLSR should therefore be preferred. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 784 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439988 SN - 1866-8372 IS - 784 ER - TY - GEN A1 - Choi, Youngeun A1 - Schmidt, Carsten A1 - Tinnefeld, Philip A1 - Bald, Ilko A1 - Rödiger, Stefan T1 - A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads T2 - Postprints der Universität Potsdam : Mathematisch-naturwissenschaftliche Reihe N2 - The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 705 KW - nucleic-acids KW - hybridization KW - microrna KW - flourescence KW - biomarkers KW - platform KW - particle KW - binding KW - array KW - gene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428271 SN - 1866-8372 IS - 705 ER - TY - GEN A1 - Ebel, Kenny A1 - Bald, Ilko T1 - Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A₄), d(A₈), d(A₁₂), d(A₁₆), and d(A₂₀)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A₄) to d(A₁₆), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A₂₀), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA₂₀ sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 814 KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - low-energy electrons KW - sequence dependence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-444125 SN - 1866-8372 IS - 814 ER - TY - GEN A1 - Heck, Christian A1 - Kanehira, Yuya A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures T2 - Mathematisch-Naturwissenschaftliche Reihe N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 732 KW - amorphous carbon KW - DNA origami KW - SERS KW - nanoparticle dimers KW - nanolenses Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430812 SN - 1866-8372 IS - 732 ER - TY - GEN A1 - Kopyra, Janina A1 - Wierzbicka, Paulina A1 - Tulwin, Adrian A1 - Thiam, Guillaume A1 - Bald, Ilko A1 - Rabilloud, Franck A1 - Abdoul-Carime, Hassan T1 - Experimental and theoretical studies of dissociative electron attachment to metabolites oxaloacetic and citric acids T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this contribution the dissociative electron attachment to metabolites found in aerobic organisms, namely oxaloacetic and citric acids, was studied both experimentally by means of a crossed-beam setup and theoretically through density functional theory calculations. Prominent negative ion resonances from both compounds are observed peaking below 0.5 eV resulting in intense formation of fragment anions associated with a decomposition of the carboxyl groups. In addition, resonances at higher energies (3–9 eV) are observed exclusively from the decomposition of the oxaloacetic acid. These fragments are generated with considerably smaller intensities. The striking findings of our calculations indicate the different mechanism by which the near 0 eV electron is trapped by the precursor molecule to form the transitory negative ion prior to dissociation. For the oxaloacetic acid, the transitory anion arises from the capture of the electron directly into some valence states, while, for the citric acid, dipole- or multipole-bound states mediate the transition into the valence states. What is also of high importance is that both compounds while undergoing DEA reactions generate highly reactive neutral species that can lead to severe cell damage in a biological environment. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1156 KW - dissociative electron attachment KW - negative ions KW - oxaloacetic acid KW - citric acid KW - mass spectrometry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521829 SN - 1866-8372 IS - 1156 ER - TY - GEN A1 - Meiling, Till Thomas A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 264 KW - Fluorescence spectroscopy KW - Nanoparticles KW - Synthesis and processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97087 ER - TY - GEN A1 - Olejko, Lydia A1 - Cywiński, P. J. A1 - Bald, Ilko T1 - An ion-controlled four-color fluorescent telomeric switch on DNA origami structures N2 - The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using Förster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 254 KW - resonance energy-transfer KW - g-quadruplex KW - quantum dots KW - strand breakage KW - photonic wires KW - 3-color fret KW - nanostructures KW - recognition KW - sensitivity KW - assemblies Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95831 SP - 10339 EP - 10347 ER - TY - GEN A1 - Prinz, Julia A1 - Heck, Christian A1 - Ellerik, Lisa A1 - Merk, Virginia A1 - Bald, Ilko T1 - DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity N2 - DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 221 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89714 SP - 5612 EP - 5620 ER - TY - GEN A1 - Schneider, Matthias A1 - Fritzsche, Nora A1 - Puciul-Malinowska, Agnieszka A1 - Balis, Andrzej A1 - Mostafa, Amr A1 - Bald, Ilko A1 - Zapotoczny, Szczepan A1 - Taubert, Andreas T1 - Surface etching of 3D printed poly(lactic acid) with NaOH: a systematic approach T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1212 KW - surface modification KW - sodium hydroxide etching KW - poly(lactic acid) KW - 3D printing KW - roughness KW - wettability KW - erosion Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525088 SN - 1866-8372 IS - 8 ER - TY - GEN A1 - Schürmann, Robin Mathis A1 - Bald, Ilko T1 - Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine N2 - The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine (8BrA) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of 8BrA is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as 8BrA can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 330 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395113 ER - TY - GEN A1 - Tasior, Mariusz A1 - Bald, Ilko A1 - Deperasińska, Irena A1 - Cywiński, Piotr J. A1 - Gryko, Daniel T. T1 - An internal charge transfer-dependent solvent effect in V-shaped azacyanines N2 - New V-shaped non-centrosymmetric dyes, possessing a strongly electron-deficient azacyanine core, have been synthesized based on a straightforward two-step approach. The key step in this synthesis involves palladium-catalysed cross-coupling of dibromo-N,N′-methylene-2,2′-azapyridinocyanines with arylacetylenes. The resulting strongly polarized π-expanded heterocycles exhibit green to orange fluorescence and they strongly respond to changes in solvent polarity. We demonstrate that differently electron-donating peripheral groups have a significant influence on the internal charge transfer, hence on the solvent effect and fluorescence quantum yield. TD-DFT calculations confirm that, in contrast to the previously studied bis(styryl)azacyanines, the proximity of S1 and T2 states calculated for compounds bearing two 4-N,N-dimethylaminophenylethynyl moieties establishes good conditions for efficient intersystem crossing and is responsible for its low fluorescence quantum yield. Non-linear properties have also been determined for new azacyanines and the results show that depending on peripheral groups, the synthesized dyes exhibit small to large two-photon absorption cross sections reaching 4000 GM. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 306 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102704 SP - 11714 EP - 11720 ER - TY - GEN A1 - Zühlke, Martin A1 - Meiling, Till Thomas A1 - Roder, Phillip A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Bald, Ilko A1 - Löhmannsröben, Hans-Gerd A1 - Janßen, Traute A1 - Erhard, Marcel A1 - Repp, Alexander T1 - Photodynamic Inactivation of E. coli Bacteria via Carbon Nanodots T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1220 KW - Bacteria KW - Genetics KW - Fluorescence KW - Photodynamics KW - Irradiation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-538425 SN - 1866-8372 SP - 23742 EP - 23749 PB - Universität Potsdam CY - Potsdam ER -