TY - JOUR A1 - Cabalar, Pedro A1 - Dieguez, Martin A1 - Schaub, Torsten H. A1 - Schuhmann, Anna T1 - Towards metric temporal answer set programming JF - Theory and practice of logic programming N2 - We elaborate upon the theoretical foundations of a metric temporal extension of Answer Set Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the same semantic underpinnings as its predecessors and thus use a simple time domain of bounded time steps. This allows us to compare all variants in a uniform framework and ultimately combine them in a common implementation. Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000307 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 783 EP - 798 PB - Cambridge Univ. Press CY - Cambridge [u.a.] ER - TY - JOUR A1 - Fandinno, Jorge A1 - Lifschitz, Vladimir A1 - Lühne, Patrick A1 - Schaub, Torsten H. T1 - Verifying tight logic programs with Anthem and Vampire JF - Theory and practice of logic programming N2 - This paper continues the line of research aimed at investigating the relationship between logic programs and first-order theories. We extend the definition of program completion to programs with input and output in a subset of the input language of the ASP grounder gringo, study the relationship between stable models and completion in this context, and describe preliminary experiments with the use of two software tools, anthem and vampire, for verifying the correctness of programs with input and output. Proofs of theorems are based on a lemma that relates the semantics of programs studied in this paper to stable models of first-order formulas. Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000344 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 735 EP - 750 PB - Cambridge Univ. Press CY - Cambridge [u.a.] ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Garea, Javier A1 - Romero, Javier A1 - Schaub, Torsten H. T1 - Eclingo BT - a solver for epistemic logic programs JF - Theory and practice of logic programming N2 - We describe eclingo, a solver for epistemic logic programs under Gelfond 1991 semantics built upon the Answer Set Programming system clingo. The input language of eclingo uses the syntax extension capabilities of clingo to define subjective literals that, as usual in epistemic logic programs, allow for checking the truth of a regular literal in all or in some of the answer sets of a program. The eclingo solving process follows a guess and check strategy. It first generates potential truth values for subjective literals and, in a second step, it checks the obtained result with respect to the cautious and brave consequences of the program. This process is implemented using the multi-shot functionalities of clingo. We have also implemented some optimisations, aiming at reducing the search space and, therefore, increasing eclingo 's efficiency in some scenarios. Finally, we compare the efficiency of eclingo with two state-of-the-art solvers for epistemic logic programs on a pair of benchmark scenarios and show that eclingo generally outperforms their obtained results. KW - Answer Set Programming KW - Epistemic Logic Programs KW - Non-Monotonic KW - Reasoning KW - Conformant Planning Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000228 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 6 SP - 834 EP - 847 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Lindauer, Marius A1 - Hoos, Holger A1 - Leyton-Brown, Kevin A1 - Schaub, Torsten H. T1 - Automatic construction of parallel portfolios via algorithm configuration JF - Artificial intelligence N2 - Since 2004, increases in computational power described by Moore's law have substantially been realized in the form of additional cores rather than through faster clock speeds. To make effective use of modern hardware when solving hard computational problems, it is therefore necessary to employ parallel solution strategies. In this work, we demonstrate how effective parallel solvers for propositional satisfiability (SAT), one of the most widely studied NP-complete problems, can be produced automatically from any existing sequential, highly parametric SAT solver. Our Automatic Construction of Parallel Portfolios (ACPP) approach uses an automatic algorithm configuration procedure to identify a set of configurations that perform well when executed in parallel. Applied to two prominent SAT solvers, Lingeling and clasp, our ACPP procedure identified 8-core solvers that significantly outperformed their sequential counterparts on a diverse set of instances from the application and hard combinatorial category of the 2012 SAT Challenge. We further extended our ACPP approach to produce parallel portfolio solvers consisting of several different solvers by combining their configuration spaces. Applied to the component solvers of the 2012 SAT Challenge gold medal winning SAT Solver pfolioUZK, our ACPP procedures produced a significantly better-performing parallel SAT solver. KW - Algorithm configuration KW - Parallel SAT solving KW - Algorithm portfolios KW - Programming by optimization KW - Automated parallelization Y1 - 2016 U6 - https://doi.org/10.1016/j.artint.2016.05.004 SN - 0004-3702 SN - 1872-7921 VL - 244 SP - 272 EP - 290 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Neubauer, Kai A1 - Haubelt, Christian A1 - Wanko, Philipp A1 - Schaub, Torsten H. T1 - Utilizing quad-trees for efficient design space exploration with partial assignment evaluation T2 - 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC) N2 - Recently, it has been shown that constraint-based symbolic solving techniques offer an efficient way for deciding binding and routing options in order to obtain a feasible system level implementation. In combination with various background theories, a feasibility analysis of the resulting system may already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can be pruned early in the decision process, which fastens the solving accordingly. However, allowing a proper design space exploration including multi-objective optimization also requires an efficient structure for storing and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree data structure in the context of partial assignment evaluation during system synthesis. Out experiments show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees over a commonly used list-based implementation for large combinatorial optimization problems. Y1 - 2018 SN - 978-1-5090-0602-1 U6 - https://doi.org/10.1109/ASPDAC.2018.8297362 SN - 2153-6961 SP - 434 EP - 439 PB - IEEE CY - New York ER - TY - GEN A1 - Bosser, Anne-Gwenn A1 - Cabalar, Pedro A1 - Dieguez, Martin A1 - Schaub, Torsten H. T1 - Introducing temporal stable models for linear dynamic logic T2 - 16th International Conference on Principles of Knowledge Representation and Reasoning N2 - We propose a new temporal extension of the logic of Here-and-There (HT) and its equilibria obtained by combining it with dynamic logic over (linear) traces. Unlike previous temporal extensions of HT based on linear temporal logic, the dynamic logic features allow us to reason about the composition of actions. For instance, this can be used to exercise fine grained control when planning in robotics, as exemplified by GOLOG. In this paper, we lay the foundations of our approach, and refer to it as Linear Dynamic Equilibrium Logic, or simply DEL. We start by developing the formal framework of DEL and provide relevant characteristic results. Among them, we elaborate upon the relationships to traditional linear dynamic logic and previous temporal extensions of HT. Y1 - 2018 UR - https://www.dc.fi.udc.es/~cabalar/del.pdf SP - 12 EP - 21 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - GEN A1 - Schäpers, Björn A1 - Niemueller, Tim A1 - Lakemeyer, Gerhard A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - ASP-Based Time-Bounded Planning for Logistics Robots T2 - Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018) N2 - Manufacturing industries are undergoing a major paradigm shift towards more autonomy. Automated planning and scheduling then becomes a necessity. The Planning and Execution Competition for Logistics Robots in Simulation held at ICAPS is based on this scenario and provides an interesting testbed. However, the posed problem is challenging as also demonstrated by the somewhat weak results in 2017. The domain requires temporal reasoning and dealing with uncertainty. We propose a novel planning system based on Answer Set Programming and the Clingo solver to tackle these problems and incentivize robot cooperation. Our results show a significant performance improvement, both, in terms of lowering computational requirements and better game metrics. Y1 - 2018 SN - 2334-0835 SN - 2334-0843 SP - 509 EP - 517 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - JOUR A1 - Gebser, Martin A1 - Obermeier, Philipp A1 - Schaub, Torsten H. A1 - Ratsch-Heitmann, Michel A1 - Runge, Mario T1 - Routing driverless transport vehicles in car assembly with answer set programming JF - Theory and practice of logic programming N2 - Automated storage and retrieval systems are principal components of modern production and warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated pallet trucks in transporting production materials between storage locations and assembly stations. While low-level control systems take care of navigating such driverless vehicles along programmed routes and avoid collisions even under unforeseen circumstances, in the common case of multiple vehicles sharing the same operation area, the problem remains how to set up routes such that a collection of transport tasks is accomplished most effectively. We address this prevalent problem in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial vehicles, where routes for automated guided vehicles used in the production process have traditionally been hand-coded by human engineers. Such adhoc methods may suffice as long as a running production process remains in place, while any change in the factory layout or production targets necessitates tedious manual reconfiguration, not to mention the missing portability between different production plants. Unlike this, we propose a declarative approach based on Answer Set Programming to optimize the routes taken by automated guided vehicles for accomplishing transport tasks. The advantages include a transparent and executable problem formalization, provable optimality of routes relative to objective criteria, as well as elaboration tolerance towards particular factory layouts and production targets. Moreover, we demonstrate that our approach is efficient enough to deal with the transport tasks evolving in realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH. KW - automated guided vehicle routing KW - car assembly operations KW - answer set programming Y1 - 2018 U6 - https://doi.org/10.1017/S1471068418000182 SN - 1471-0684 SN - 1475-3081 VL - 18 IS - 3-4 SP - 520 EP - 534 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Brewka, Gerhard A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Interview with Gerhard Brewka T2 - Künstliche Intelligenz N2 - This interview with Gerhard Brewka was conducted by correspondance in May 2018. The question set was compiled by Torsten Schaub and Stefan Woltran. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0549-5 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 219 EP - 221 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Lifschitz, Vladimir A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Interview with Vladimir Lifschitz T2 - Künstliche Intelligenz N2 - This interview with Vladimir Lifschitz was conducted by Torsten Schaub at the University of Texas at Austin in August 2017. The question set was compiled by Torsten Schaub and Stefan Woltran. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0552-x SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 213 EP - 218 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Haubelt, Christian A1 - Neubauer, Kai A1 - Schaub, Torsten H. A1 - Wanko, Philipp T1 - Design space exploration with answer set programming JF - Künstliche Intelligenz N2 - The aim of our project design space exploration with answer set programming is to develop a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system design problem and simultaneously performs Design Space Exploration (DSE) to find the most favorable alternatives. We leverage recent developments in ASP solving that allow for tight integration of background theories to create a holistic framework for effective DSE. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0530-3 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 205 EP - 206 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Brewka, Gerhard A1 - Ellmauthaler, Stefan A1 - Kern-Isberner, Gabriele A1 - Obermeier, Philipp A1 - Ostrowski, Max A1 - Romero, Javier A1 - Schaub, Torsten H. A1 - Schieweck, Steffen T1 - Advanced solving technology for dynamic and reactive applications JF - Künstliche Intelligenz Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0538-8 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 199 EP - 200 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Kaufmann, Benjamin A1 - Lühne, Patrick A1 - Obermeier, Philipp A1 - Ostrowski, Max A1 - Romero Davila, Javier A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian A1 - Wanko, Philipp T1 - The Potsdam Answer Set Solving Collection 5.0 JF - Künstliche Intelligenz N2 - The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0528-x SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 181 EP - 182 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Answer set programming unleashed! JF - Künstliche Intelligenz N2 - Answer Set Programming faces an increasing popularity for problem solving in various domains. While its modeling language allows us to express many complex problems in an easy way, its solving technology enables their effective resolution. In what follows, we detail some of the key factors of its success. Answer Set Programming [ASP; Brewka et al. Commun ACM 54(12):92–103, (2011)] is seeing a rapid proliferation in academia and industry due to its easy and flexible way to model and solve knowledge-intense combinatorial (optimization) problems. To this end, ASP offers a high-level modeling language paired with high-performance solving technology. As a result, ASP systems provide out-off-the-box, general-purpose search engines that allow for enumerating (optimal) solutions. They are represented as answer sets, each being a set of atoms representing a solution. The declarative approach of ASP allows a user to concentrate on a problem’s specification rather than the computational means to solve it. This makes ASP a prime candidate for rapid prototyping and an attractive tool for teaching key AI techniques since complex problems can be expressed in a succinct and elaboration tolerant way. This is eased by the tuning of ASP’s modeling language to knowledge representation and reasoning (KRR). The resulting impact is nicely reflected by a growing range of successful applications of ASP [Erdem et al. AI Mag 37(3):53–68, 2016; Falkner et al. Industrial applications of answer set programming. K++nstliche Intelligenz (2018)] Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0550-z SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 105 EP - 108 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Special issue on answer set programming T2 - Künstliche Intelligenz Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0554-8 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 101 EP - 103 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Frioux, Clémence A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian A1 - Siegel, Anne A1 - Wanko, Philipp T1 - Hybrid metabolic network completion JF - Theory and practice of logic programming N2 - Metabolic networks play a crucial role in biology since they capture all chemical reactions in an organism. While there are networks of high quality for many model organisms, networks for less studied organisms are often of poor quality and suffer from incompleteness. To this end, we introduced in previous work an answer set programming (ASP)-based approach to metabolic network completion. Although this qualitative approach allows for restoring moderately degraded networks, it fails to restore highly degraded ones. This is because it ignores quantitative constraints capturing reaction rates. To address this problem, we propose a hybrid approach to metabolic network completion that integrates our qualitative ASP approach with quantitative means for capturing reaction rates. We begin by formally reconciling existing stoichiometric and topological approaches to network completion in a unified formalism. With it, we develop a hybrid ASP encoding and rely upon the theory reasoning capacities of the ASP system dingo for solving the resulting logic program with linear constraints over reals. We empirically evaluate our approach by means of the metabolic network of Escherichia coli. Our analysis shows that our novel approach yields greatly superior results than obtainable from purely qualitative or quantitative approaches. KW - answer set programming KW - metabolic network KW - gap-filling KW - linear programming KW - hybrid solving KW - bioinformatics Y1 - 2018 U6 - https://doi.org/10.1017/S1471068418000455 SN - 1471-0684 SN - 1475-3081 VL - 19 IS - 1 SP - 83 EP - 108 PB - Cambridge University Press CY - New York ER - TY - GEN A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Lower Bound Founded Logic of Here-and-There T2 - Logics in Artificial Intelligence N2 - A distinguishing feature of Answer Set Programming is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There, whose equilibrium models correspond to stable models. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. This idea was generalized by Aziz to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In this paper, we present a logical reconstruction of Aziz’ idea in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables along with its equilibrium models and elaborate upon its formal properties. Finally, we compare our approach with related ones and sketch future work. Y1 - 2019 SN - 978-3-030-19570-0 SN - 978-3-030-19569-4 U6 - https://doi.org/10.1007/978-3-030-19570-0_34 SN - 0302-9743 SN - 1611-3349 VL - 11468 SP - 509 EP - 525 PB - Springer CY - Cham ER - TY - JOUR A1 - Banbara, Mutsunori A1 - Inoue, Katsumi A1 - Kaufmann, Benjamin A1 - Okimoto, Tenda A1 - Schaub, Torsten H. A1 - Soh, Takehide A1 - Tamura, Naoyuki A1 - Wanko, Philipp T1 - teaspoon BT - solving the curriculum-based course timetabling problems with answer set programming JF - Annals of operation research N2 - Answer Set Programming (ASP) is an approach to declarative problem solving, combining a rich yet simple modeling language with high performance solving capacities. We here develop an ASP-based approach to curriculum-based course timetabling (CB-CTT), one of the most widely studied course timetabling problems. The resulting teaspoon system reads a CB-CTT instance of a standard input format and converts it into a set of ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving, which can subsequently be solved by any off-the-shelf ASP systems. We establish the competitiveness of our approach by empirically contrasting it to the best known bounds obtained so far via dedicated implementations. Furthermore, we extend the teaspoon system to multi-objective course timetabling and consider minimal perturbation problems. KW - Educational timetabling KW - Course timetabling KW - Answer set programming KW - Multi-objective optimization KW - Minimal perturbation problems Y1 - 2018 U6 - https://doi.org/10.1007/s10479-018-2757-7 SN - 0254-5330 SN - 1572-9338 VL - 275 IS - 1 SP - 3 EP - 37 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Dimopoulos, Yannis A1 - Gebser, Martin A1 - Lühne, Patrick A1 - Romero Davila, Javier A1 - Schaub, Torsten H. T1 - plasp 3 BT - Towards Effective ASP Planning JF - Theory and practice of logic programming N2 - We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning. KW - knowledge representation and nonmonotonic reasoning KW - technical notes and rapid communications KW - answer set programming KW - automated planning KW - action and change Y1 - 2019 U6 - https://doi.org/10.1017/S1471068418000583 SN - 1471-0684 SN - 1475-3081 VL - 19 IS - 3 SP - 477 EP - 504 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Gelfond-Zhang aggregates as propositional formulas JF - Artificial intelligence N2 - Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide. KW - Aggregates KW - Answer Set Programming Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2018.10.007 SN - 0004-3702 SN - 1872-7921 VL - 274 SP - 26 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hoos, Holger A1 - Kaminski, Roland A1 - Lindauer, Marius A1 - Schaub, Torsten H. T1 - aspeed: Solver scheduling via answer set programming JF - Theory and practice of logic programming N2 - Although Boolean Constraint Technology has made tremendous progress over the last decade, the efficacy of state-of-the-art solvers is known to vary considerably across different types of problem instances, and is known to depend strongly on algorithm parameters. This problem was addressed by means of a simple, yet effective approach using handmade, uniform, and unordered schedules of multiple solvers in ppfolio, which showed very impressive performance in the 2011 Satisfiability Testing (SAT) Competition. Inspired by this, we take advantage of the modeling and solving capacities of Answer Set Programming (ASP) to automatically determine more refined, that is, nonuniform and ordered solver schedules from the existing benchmarking data. We begin by formulating the determination of such schedules as multi-criteria optimization problems and provide corresponding ASP encodings. The resulting encodings are easily customizable for different settings, and the computation of optimum schedules can mostly be done in the blink of an eye, even when dealing with large runtime data sets stemming from many solvers on hundreds to thousands of instances. Also, the fact that our approach can be customized easily enabled us to swiftly adapt it to generate parallel schedules for multi-processor machines. KW - algorithm schedules KW - answer set programming KW - portfolio-based solving Y1 - 2015 U6 - https://doi.org/10.1017/S1471068414000015 SN - 1471-0684 SN - 1475-3081 VL - 15 SP - 117 EP - 142 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Lindauer, Marius A1 - Hoos, Holger H. A1 - Hutter, Frank A1 - Schaub, Torsten H. T1 - An automatically configured algorithm selector JF - The journal of artificial intelligence research N2 - Algorithm selection (AS) techniques - which involve choosing from a set of algorithms the one expected to solve a given problem instance most efficiently - have substantially improved the state of the art in solving many prominent AI problems, such as SAT, CSP, ASP, MAXSAT and QBF. Although several AS procedures have been introduced, not too surprisingly, none of them dominates all others across all AS scenarios. Furthermore, these procedures have parameters whose optimal values vary across AS scenarios. This holds specifically for the machine learning techniques that form the core of current AS procedures, and for their hyperparameters. Therefore, to successfully apply AS to new problems, algorithms and benchmark sets, two questions need to be answered: (i) how to select an AS approach and (ii) how to set its parameters effectively. We address both of these problems simultaneously by using automated algorithm configuration. Specifically, we demonstrate that we can automatically configure claspfolio 2, which implements a large variety of different AS approaches and their respective parameters in a single, highly-parameterized algorithm framework. Our approach, dubbed AutoFolio, allows researchers and practitioners across a broad range of applications to exploit the combined power of many different AS methods. We demonstrate AutoFolio can significantly improve the performance of claspfolio 2 on 8 out of the 13 scenarios from the Algorithm Selection Library, leads to new state-of-the-art algorithm selectors for 7 of these scenarios, and matches state-of-the-art performance (statistically) on all other scenarios. Compared to the best single algorithm for each AS scenario, AutoFolio achieves average speedup factors between 1.3 and 15.4. Y1 - 2015 SN - 1076-9757 SN - 1943-5037 VL - 53 SP - 745 EP - 778 PB - AI Access Foundation CY - Marina del Rey ER - TY - JOUR A1 - Videla, Santiago A1 - Guziolowski, Carito A1 - Eduati, Federica A1 - Thiele, Sven A1 - Gebser, Martin A1 - Nicolas, Jacques A1 - Saez-Rodriguez, Julio A1 - Schaub, Torsten H. A1 - Siegel, Anne T1 - Learning Boolean logic models of signaling networks with ASP JF - Theoretical computer science N2 - Boolean networks provide a simple yet powerful qualitative modeling approach in systems biology. However, manual identification of logic rules underlying the system being studied is in most cases out of reach. Therefore, automated inference of Boolean logical networks from experimental data is a fundamental question in this field. This paper addresses the problem consisting of learning from a prior knowledge network describing causal interactions and phosphorylation activities at a pseudo-steady state, Boolean logic models of immediate-early response in signaling transduction networks. The underlying optimization problem has been so far addressed through mathematical programming approaches and the use of dedicated genetic algorithms. In a recent work we have shown severe limitations of stochastic approaches in this domain and proposed to use Answer Set Programming (ASP), considering a simpler problem setting. Herein, we extend our previous work in order to consider more realistic biological conditions including numerical datasets, the presence of feedback-loops in the prior knowledge network and the necessity of multi-objective optimization. In order to cope with such extensions, we propose several discretization schemes and elaborate upon our previous ASP encoding. Towards real-world biological data, we evaluate the performance of our approach over in silico numerical datasets based on a real and large-scale prior knowledge network. The correctness of our encoding and discretization schemes are dealt with in Appendices A-B. (C) 2014 Elsevier B.V. All rights reserved. KW - Answer set programming KW - Signaling transduction networks KW - Boolean logic models KW - Combinatorial multi-objective optimization KW - Systems biology Y1 - 2015 U6 - https://doi.org/10.1016/j.tcs.2014.06.022 SN - 0304-3975 SN - 1879-2294 VL - 599 SP - 79 EP - 101 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hoos, Holger A1 - Lindauer, Marius A1 - Schaub, Torsten H. T1 - claspfolio 2 BT - advances in algorithm selection for answer set programming JF - Theory and practice of logic programming N2 - Building on the award-winning, portfolio-based ASP solver claspfolio, we present claspfolio 2, a modular and open solver architecture that integrates several different portfolio-based algorithm selection approaches and techniques. The claspfolio 2 solver framework supports various feature generators, solver selection approaches, solver portfolios, as well as solver-schedule-based pre-solving techniques. The default configuration of claspfolio 2 relies on a light-weight version of the ASP solver clasp to generate static and dynamic instance features. The flexible open design of claspfolio 2 is a distinguishing factor even beyond ASP. As such, it provides a unique framework for comparing and combining existing portfolio-based algorithm selection approaches and techniques in a single, unified framework. Taking advantage of this, we conducted an extensive experimental study to assess the impact of different feature sets, selection approaches and base solver portfolios. In addition to gaining substantial insights into the utility of the various approaches and techniques, we identified a default configuration of claspfolio 2 that achieves substantial performance gains not only over clasp's default configuration and the earlier version of claspfolio, but also over manually tuned configurations of clasp. Y1 - 2014 U6 - https://doi.org/10.1017/S1471068414000210 SN - 1471-0684 SN - 1475-3081 VL - 14 SP - 569 EP - 585 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Sabuncu, Orkunt A1 - Schaub, Torsten H. T1 - An incremental answer set programming based system for finite model computation JF - AI communications : AICOM ; the European journal on artificial intelligence N2 - We address the problem of Finite Model Computation (FMC) of first-order theories and show that FMC can efficiently and transparently be solved by taking advantage of a recent extension of Answer Set Programming (ASP), called incremental Answer Set Programming (iASP). The idea is to use the incremental parameter in iASP programs to account for the domain size of a model. The FMC problem is then successively addressed for increasing domain sizes until an answer set, representing a finite model of the original first-order theory, is found. We implemented a system based on the iASP solver iClingo and demonstrate its competitiveness by showing that it slightly outperforms the winner of the FNT division of CADE's 2009 Automated Theorem Proving (ATP) competition on the respective benchmark collection. KW - Incremental answer set programming KW - finite model computation Y1 - 2011 U6 - https://doi.org/10.3233/AIC-2011-0496 SN - 0921-7126 VL - 24 IS - 2 SP - 195 EP - 212 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Kaminski, Roland A1 - Ostrowski, Max A1 - Schaub, Torsten H. A1 - Schneider, Marius T1 - Potassco the Potsdam answer set solving collection JF - AI communications : AICOM ; the European journal on artificial intelligence N2 - This paper gives an overview of the open source project Potassco, the Potsdam Answer Set Solving Collection, bundling tools for Answer Set Programming developed at the University of Potsdam. KW - Answer set programming KW - declarative problem solving Y1 - 2011 U6 - https://doi.org/10.3233/AIC-2011-0491 SN - 0921-7126 VL - 24 IS - 2 SP - 107 EP - 124 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Veber, Philippe T1 - Detecting inconsistencies in large biological networks with answer set programming JF - Theory and practice of logic programming N2 - We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions. KW - answer set programming KW - bioinformatics KW - consistency KW - diagnosis Y1 - 2011 U6 - https://doi.org/10.1017/S1471068410000554 SN - 1471-0684 VL - 11 IS - 5-6 SP - 323 EP - 360 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Schaub, Torsten H. T1 - Complex optimization in answer set programming JF - Theory and practice of logic programming N2 - Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications. KW - Answer Set Programming KW - Preference Handling KW - Complex optimization KW - Meta-Programming Y1 - 2011 U6 - https://doi.org/10.1017/S1471068411000329 SN - 1471-0684 VL - 11 IS - 3 SP - 821 EP - 839 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Durzinsky, Markus A1 - Marwan, Wolfgang A1 - Ostrowski, Max A1 - Schaub, Torsten H. A1 - Wagler, Annegret T1 - Automatic network reconstruction using ASP JF - Theory and practice of logic programming N2 - Building biological models by inferring functional dependencies from experimental data is an important issue in Molecular Biology. To relieve the biologist from this traditionally manual process, various approaches have been proposed to increase the degree of automation. However, available approaches often yield a single model only, rely on specific assumptions, and/or use dedicated, heuristic algorithms that are intolerant to changing circumstances or requirements in the view of the rapid progress made in Biotechnology. Our aim is to provide a declarative solution to the problem by appeal to Answer Set Programming (ASP) overcoming these difficulties. We build upon an existing approach to Automatic Network Reconstruction proposed by part of the authors. This approach has firm mathematical foundations and is well suited for ASP due to its combinatorial flavor providing a characterization of all models explaining a set of experiments. The usage of ASP has several benefits over the existing heuristic algorithms. First, it is declarative and thus transparent for biological experts. Second, it is elaboration tolerant and thus allows for an easy exploration and incorporation of biological constraints. Third, it allows for exploring the entire space of possible models. Finally, our approach offers an excellent performance, matching existing, special-purpose systems. Y1 - 2011 U6 - https://doi.org/10.1017/S1471068411000287 SN - 1471-0684 VL - 11 SP - 749 EP - 766 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Mileo, Alessandra A1 - Schaub, Torsten H. A1 - Merico, Davide A1 - Bisiani, Roberto T1 - Knowledge-based multi-criteria optimization to support indoor positioning JF - Annals of mathematics and artificial intelligence N2 - Indoor position estimation constitutes a central task in home-based assisted living environments. Such environments often rely on a heterogeneous collection of low-cost sensors whose diversity and lack of precision has to be compensated by advanced techniques for localization and tracking. Although there are well established quantitative methods in robotics and neighboring fields for addressing these problems, they lack advanced knowledge representation and reasoning capacities. Such capabilities are not only useful in dealing with heterogeneous and incomplete information but moreover they allow for a better inclusion of semantic information and more general homecare and patient-related knowledge. We address this problem and investigate how state-of-the-art localization and tracking methods can be combined with Answer Set Programming, as a popular knowledge representation and reasoning formalism. We report upon a case-study and provide a first experimental evaluation of knowledge-based position estimation both in a simulated as well as in a real setting. KW - Knowledge representation KW - Answer Set Programming KW - Wireless Sensor Networks KW - Localization KW - Tracking Y1 - 2011 U6 - https://doi.org/10.1007/s10472-011-9241-2 SN - 1012-2443 SN - 1573-7470 VL - 62 IS - 3-4 SP - 345 EP - 370 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Schaub, Torsten H. T1 - Multi-threaded ASP solving with clasp JF - Theory and practice of logic programming N2 - We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We detail its component and communication architecture and illustrate how they support the principal functionalities of clasp. Also, we provide some insights into the data representation used for different constraint types handled by clasp. All this is accompanied by an extensive experimental analysis of the major features related to multi-threading in clasp. Y1 - 2012 U6 - https://doi.org/10.1017/S1471068412000166 SN - 1471-0684 VL - 12 IS - 8 SP - 525 EP - 545 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Ostrowski, Max A1 - Schaub, Torsten H. T1 - ASP modulo CSP The clingcon system JF - Theory and practice of logic programming N2 - We present the hybrid ASP solver clingcon, combining the simple modeling language and the high performance Boolean solving capacities of Answer Set Programming (ASP) with techniques for using non-Boolean constraints from the area of Constraint Programming (CP). The new clingcon system features an extended syntax supporting global constraints and optimize statements for constraint variables. The major technical innovation improves the interaction between ASP and CP solver through elaborated learning techniques based on irreducible inconsistent sets. A broad empirical evaluation shows that these techniques yield a performance improvement of an order of magnitude. Y1 - 2012 U6 - https://doi.org/10.1017/S1471068412000142 SN - 1471-0684 VL - 12 SP - 485 EP - 503 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Schaub, Torsten H. T1 - Conflict-driven answer set solving: From theory to practice JF - Artificial intelligence N2 - We introduce an approach to computing answer sets of logic programs, based on concepts successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with a uniform constraint-based framework capturing diverse inferences encountered in ASP solving. Moreover, our approach allows us to apply advanced solving techniques from the area of SAT. As a result, we present the first full-fledged algorithmic framework for native conflict-driven ASP solving. Our approach is implemented in the ASP solver clasp that has demonstrated its competitiveness and versatility by winning first places at various solver contests. KW - Answer set programming KW - Logic programming KW - Nonmonotonic reasoning Y1 - 2012 U6 - https://doi.org/10.1016/j.artint.2012.04.001 SN - 0004-3702 VL - 187 IS - 8 SP - 52 EP - 89 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Tableau calculi for logic programs under answer set semantics JF - ACM transactions on computational logic N2 - We introduce formal proof systems based on tableau methods for analyzing computations in Answer Set Programming (ASP). Our approach furnishes fine-grained instruments for characterizing operations as well as strategies of ASP solvers. The granularity is detailed enough to capture a variety of propagation and choice methods of algorithms used for ASP solving, also incorporating SAT-based and conflict-driven learning approaches to some extent. This provides us with a uniform setting for identifying and comparing fundamental properties of ASP solving approaches. In particular, we investigate their proof complexities and show that the run-times of best-case computations can vary exponentially between different existing ASP solvers. Apart from providing a framework for comparing ASP solving approaches, our characterizations also contribute to their understanding by pinning down the constitutive atomic operations. Furthermore, our framework is flexible enough to integrate new inference patterns, and so to study their relation to existing ones. To this end, we generalize our approach and provide an extensible basis aiming at a modular incorporation of additional language constructs. This is exemplified by augmenting our basic tableau methods with cardinality constraints and disjunctions. KW - Theory KW - Answer Set Programming KW - tableau calculi KW - proof complexity Y1 - 2013 U6 - https://doi.org/10.1145/2480759.2480767 SN - 1529-3785 VL - 14 IS - 2 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Delgrande, James A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - A model-theoretic approach to belief change in answer set programming JF - ACM transactions on computational logic N2 - We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs. We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision. We next consider approaches for merging a set of logic programs, P-1,...,P-n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P-i those models of P-i that vary the least from models of the other programs. The second approach informally selects those models of a program P-0 that are closest to the models of programs P-1,...,P-n. In this case, P-0 can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets. Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism. KW - Theory KW - Answer set programming KW - belief revision KW - belief merging KW - program encodings KW - strong equivalence Y1 - 2013 U6 - https://doi.org/10.1145/2480759.2480766 SN - 1529-3785 VL - 14 IS - 2 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Banbara, Mutsunori A1 - Soh, Takehide A1 - Tamura, Naoyuki A1 - Inoue, Katsumi A1 - Schaub, Torsten H. T1 - Answer set programming as a modeling language for course timetabling JF - Theory and practice of logic programming N2 - The course timetabling problem can be generally defined as the task of assigning a number of lectures to a limited set of timeslots and rooms, subject to a given set of hard and soft constraints. The modeling language for course timetabling is required to be expressive enough to specify a wide variety of soft constraints and objective functions. Furthermore, the resulting encoding is required to be extensible for capturing new constraints and for switching them between hard and soft, and to be flexible enough to deal with different formulations. In this paper, we propose to make effective use of ASP as a modeling language for course timetabling. We show that our ASP-based approach can naturally satisfy the above requirements, through an ASP encoding of the curriculum-based course timetabling problem proposed in the third track of the second international timetabling competition (ITC-2007). Our encoding is compact and human-readable, since each constraint is individually expressed by either one or two rules. Each hard constraint is expressed by using integrity constraints and aggregates of ASP. Each soft constraint S is expressed by rules in which the head is the form of penalty (S, V, C), and a violation V and its penalty cost C are detected and calculated respectively in the body. We carried out experiments on four different benchmark sets with five different formulations. We succeeded either in improving the bounds or producing the same bounds for many combinations of problem instances and formulations, compared with the previous best known bounds. KW - answer set programming KW - educational timetabling KW - course timetabling Y1 - 2013 U6 - https://doi.org/10.1017/S1471068413000495 SN - 1471-0684 VL - 13 IS - 2 SP - 783 EP - 798 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Kaminski, Roland A1 - Schaub, Torsten H. A1 - Siegel, Anne A1 - Videla, Santiago T1 - Minimal intervention strategies in logical signaling networks with ASP JF - Theory and practice of logic programming N2 - Proposing relevant perturbations to biological signaling networks is central to many problems in biology and medicine because it allows for enabling or disabling certain biological outcomes. In contrast to quantitative methods that permit fine-grained (kinetic) analysis, qualitative approaches allow for addressing large-scale networks. This is accomplished by more abstract representations such as logical networks. We elaborate upon such a qualitative approach aiming at the computation of minimal interventions in logical signaling networks relying on Kleene's three-valued logic and fixpoint semantics. We address this problem within answer set programming and show that it greatly outperforms previous work using dedicated algorithms. Y1 - 2013 U6 - https://doi.org/10.1017/S1471068413000422 SN - 1471-0684 VL - 13 SP - 675 EP - 690 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gharib, Mona A1 - Schaub, Torsten H. A1 - Mercer, Robert E. T1 - Incremental answer set programming : a preliminary report Y1 - 2007 ER - TY - JOUR A1 - Hermenegildo, Manuel A1 - Schaub, Torsten H. T1 - Introduction to the technical communications of the 26th International Conference on Logic Programming : special issue Y1 - 2010 UR - http://www.cs.kuleuven.ac.be/~dtai/projects/ALP//TPLP/ U6 - https://doi.org/10.1017/S1471068410000153 SN - 1471-0684 ER - TY - JOUR A1 - Gebser, Martin A1 - Gharib, Mona A1 - Mercer, Robert E. A1 - Schaub, Torsten H. T1 - Monotonic answer set programming N2 - Answer set programming (ASP) does not allow for incrementally constructing answer sets or locally validating constructions like proofs by only looking at a part of the given program. In this article, we elaborate upon an alternative approach to ASP that allows for incremental constructions. Our approach draws its basic intuitions from the area of default logics. We investigate the feasibility of the concept of semi-monotonicity known from default logics as a basis of incrementality. On the one hand, every logic program has at least one answer set in our alternative setting, which moreover can be constructed incrementally based on generating rules. On the other hand, the approach may produce answer sets lacking characteristic properties of standard answer sets, such as being a model of the given program. We show how integrity constraints can be used to re-establish such properties, even up to correspondence with standard answer sets. Furthermore, we develop an SLD-like proof procedure for our incremental approach to ASP, which allows for query-oriented computations. Also, we provide a characterization of our definition of answer sets via a modification of Clarks completion. Based on this notion of program completion, we present an algorithm for computing the answer sets of a logic program in our approach. Y1 - 2009 UR - http://logcom.oxfordjournals.org/ U6 - https://doi.org/10.1093/logcom/exn040 SN - 0955-792X ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - A general framework for expressing preferences in causal reasoning and planning N2 - We consider the problem of representing arbitrary preferences in causal reasoning and planning systems. In planning, a preference may be seen as a goal or constraint that is desirable, but not necessary, to satisfy. To begin, we define a very general query language for histories, or interleaved sequences of world states and actions. Based on this, we specify a second language in which preferences are defined. A single preference defines a binary relation on histories, indicating that one history is preferred to the other. From this, one can define global preference orderings on the set of histories, the maximal elements of which are the preferred histories. The approach is very general and flexible; thus it constitutes a base language in terms of which higher-level preferences may be defined. To this end, we investigate two fundamental types of preferences that we call choice and temporal preferences. We consider concrete strategies for these types of preferences and encode them in terms of our framework. We suggest how to express aggregates in the approach, allowing, e.g. the expression of a preference for histories with lowest total action costs. Last, our approach can be used to express other approaches and so serves as a common framework in which such approaches can be expressed and compared. We illustrate this by indicating how an approach due to Son and Pontelli can be encoded in our approach, as well as the language PDDL3. Y1 - 2007 UR - http://logcom.oxfordjournals.org/ U6 - https://doi.org/10.1093/logcom/exm046 SN - 0955-792X ER - TY - JOUR A1 - Brain, Martin A1 - Faber, Wolfgang A1 - Maratea, Marco A1 - Polleres, Axel A1 - Schaub, Torsten H. A1 - Schindlauer, Roman T1 - What should an ASP solver output? : a multiple position paper Y1 - 2007 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Liu, Daphne H. A1 - Schaub, Torsten H. A1 - Thiele, Sven T1 - COBA 2.0 : a consistency-based belief change system Y1 - 2007 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Conflict-driven answer set solving Y1 - 2007 SN - 978-1-57735-323-2 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Conflict-driven answer set enumeration Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Clasp : a conflict-driven answer set solver Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Debugging ASP programs by means of ASP Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report Y1 - 2007 ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - "That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description Y1 - 2007 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Generic tableaux for answer set programming Y1 - 2007 ER -