TY - JOUR A1 - Erdossy, Julia A1 - Horvath, Viola A1 - Yarman, Aysu A1 - Scheller, Frieder W. A1 - Gyurcsanyi, Robert E. T1 - Electrosynthesized molecularly imprinted polymers for protein recognition JF - Trends in Analytical Chemistry N2 - Molecularly imprinted polymers (MIPs) for the recognition of proteins are expected to possess high affinity through the establishment of multiple interactions between the polymer matrix and the large number of functional groups of the target. However, while highly affine recognition sites need building blocks rich in complementary functionalities to their target, such units are likely to generate high levels of nonspecific binding. This paradox, that nature solved by evolution for biological receptors, needs to be addressed by the implementation of new concepts in molecular imprinting of proteins. Additionally, the structural variability, large size and incompatibility with a range of monomers made the development of protein MIPs to take a slow start. While the majority of MIP preparation methods are variants of chemical polymerization, the polymerization of electroactive functional monomers emerged as a particularly advantageous approach for chemical sensing application. Electropolymerization can be performed from aqueous solutions to preserve the natural conformation of the protein templates, with high spatial resolution and electrochemical control of the polymerization process. This review compiles the latest results, identifying major trends and providing an outlook on the perspectives of electrosynthesised protein-imprinted MIPs for chemical sensing. (C) 2016 Elsevier B.V. All rights reserved. KW - Molecularly imprinted polymers KW - Proteins KW - Surface imprinting KW - Electropolymerization KW - Nanostructuring KW - Hybrid nanofilms Y1 - 2016 U6 - https://doi.org/10.1016/j.trac.2015.12.018 SN - 0165-9936 SN - 1879-3142 VL - 79 SP - 179 EP - 190 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Yarman, Aysu A1 - Dechtrirat, Decha A1 - Bosserdt, Maria A1 - Jetzschmann, Katharina J. A1 - Gajovic-Eichelmann, Nenad A1 - Scheller, Frieder W. T1 - Cytochrome c-derived hybrid systems based on moleculary imprinted polymers JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - Hybrid architectures which combine a MIP with an immobilized affinity ligand or a biocatalyst sum up the advantages of both components. In this paper, hybrid architectures combining a layer of a molecularly imprinted electropolymer with a mini-enzyme or a self-assembled monolayer will be presented. (i) Microperoxidase-11 (MP-11) catalyzed oxidation of the drug aminopyrine on a product-imprinted sublayer: The peroxide dependent conversion of the analyte aminopyrine takes place in the MP-11 containing layer on top of a product-imprinted electropolymer on the indicator electrode. The hierarchical architecture resulted in the elimination of interfering signals for ascorbic acid and uric acid. An advantage of the new hierarchical structure is the separation of MIP formation by electropolymerization and immobilization of the catalyst. In this way it was for the first time possible to integrate an enzyme with a MIP layer in a sensor configuration. This combination has the potential to be transferred to other enzymes, e.g. P450, opening the way to clinically important analytes. (ii) Epitope-imprinted poly-scopoletin layer for binding of the C-terminal peptide and cytochrome c (Cyt c): The MIP binds both the target peptide and the parent protein almost eight times stronger than the non-imprinted polymer with affinities in the lower micromolar range. Exchange of only one amino acid in the peptide decreases the binding by a factor of five. (iii) MUA-poly-scopoletin MIP for cytochrome c: Cyt c bound to the MIP covered gold electrode exhibits direct electron transfer with a redox potential and rate constant typical for the native protein. The MIP cover layer suppresses the displacement of the target protein by BSA or myoglobin. The combination of protein imprinted polymers with an efficient electron transfer is a new concept for characterizing electroactive proteins such as Cyt c. The competition with other proteins shows that the MIP binds its target Cyt c preferentially and that molecular shape and the charge of protein determine the binding of interfering proteins. KW - Molecularly imprinted polymers KW - Microperoxidase-11 KW - Cytochrome c KW - Catalytically active MIPs KW - Epitope imprinting KW - Monoclonal MIPs Y1 - 2015 U6 - https://doi.org/10.1002/elan.201400592 SN - 1040-0397 SN - 1521-4109 VL - 27 IS - 3 SP - 573 EP - 586 PB - Wiley-VCH CY - Weinheim ER -