TY - JOUR A1 - Kirchner, Sebastian A1 - Ignatova, Zoya T1 - Emerging roles of tRNA in adaptive translation, signalling dynamics and disease JF - Nature reviews N2 - tRNAs, nexus molecules between mRNAs and proteins, have a central role in translation. Recent discoveries have revealed unprecedented complexity of tRNA biosynthesis, modification patterns, regulation and function. In this Review, we present emerging concepts regarding how tRNA abundance is dynamically regulated and how tRNAs (and their nucleolytic fragments) are centrally involved in stress signalling and adaptive translation, operating across a wide range of timescales. Mutations in tRNAs or in genes affecting tRNA biogenesis are also linked to complex human diseases with surprising heterogeneity in tissue vulnerability, and we highlight cell-specific aspects that modulate the disease penetrance of tRNA-based pathologies. Y1 - 2015 U6 - https://doi.org/10.1038/nrg3861 SN - 1471-0056 SN - 1471-0064 VL - 16 IS - 2 SP - 98 EP - 112 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zhang, Gong A1 - Ignatova, Zoya T1 - Folding at the birth of the nascent chain: coordinating translation with co-translational folding JF - Current opinion in structural biology : review of all advances ; evaluation of key references ; comprehensive listing of papers N2 - In the living cells, the folding of many proteins is largely believed to begin co-translationally, during their biosynthesis at the ribosomes. In the ribosomal tunnel, the nascent peptide may establish local interactions and stabilize alpha-helical structures. Long-range contacts are more likely outside the ribosomes after release of larger segments of the nascent chain. Examples suggest that domains can attain native-like structure on the ribosome with and without population of folding intermediates. The co-translational folding is limited by the speed of the gradual extrusion of the nascent peptide which imposes conformational restraints on its folding landscape. Recent experimental and in silico modeling studies indicate that translation kinetics fine-tunes co-translational folding by providing a time delay for sequential folding of distinct portions of the nascent chain. Y1 - 2011 U6 - https://doi.org/10.1016/j.sbi.2010.10.008 SN - 0959-440X VL - 21 IS - 1 SP - 25 EP - 31 PB - Elsevier CY - London ER -