TY - GEN A1 - Püschel, Gerhard Paul A1 - Jungermann, Kurt T1 - Activation of inositol phosphate formation by circulating noradrenaline but not by sympathetic nerve stimulation with a similar increase of glucose release in perfused rat liver N2 - In the isolated rat liver perfused in situ, stimulation of the nerve bundles around the hepatic artery and portal vein caused an increase of glucose and lactate output and a reduction of perfusion flow. These changes could be inhibited completely by α-receptor blockers. The possible involvement of inositol phosphates in the intracellular signal transmission was studied. 1. In cell-suspension experiments, which were performed as a positive control, noradrenaline caused an increase in glucose output and, in the presence of 10 mM LiCl, a dose-dependent and time-dependent increase of inositol mono, bis and trisphosphate. 2. In the perfused rat liver 1 μM noradrenaline caused an increase of glucose and lactate output and in the presence of 10 mM LiCl a time-dependent increase of inositol mono, bis and trisphosphate that was comparable to that observed in cell suspensions. 3. In the perfused rat liver stimulation of the nerve bundles around the portal vein and hepatic artery caused a similar increase in glucose and lactate output to that produced by noradrenaline, but in the presence of 10 mM LiCl there was a smaller increase of inositol monophosphate and no increase of inositol bis and trisphosphate. These findings are in line with the proposal that circulating noradrenaline reaches every hepatocyte, causing a clear overall increase of inositol phosphate formation and thus calcium release from the endoplasmic reticulum, while the hepatic nerves reach only a few cells causing there a small local change of inositol phosphate metabolism and thence a propagation of the signal via gap junctions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 110 Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45846 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Nath, Annegret A1 - Jungermann, Kurt T1 - Increase of urate formation by stimulation of sympathetic hepatic nerves, circulating noradrenaline and glucagon inthe perfused rat liver N2 - In the isolated rat liver perfused in situ stimulation of the nerve bundles around the portal vein and the hepatic artery caused an increase of urate formation that was inhibited by the α1-blocker prazosine and the xanthine oxidase inhibitor allopurinol. Moreover, nerve stimulation increased glucose and lactate output and decreased perfusion flow. Infusion of noradrenaline had similar effects. Compared to nerve stimulation infusion of glucagon led to a less pronounced increase of urate formation and a twice as large increase in glucose output but a decrease in lactate release without affecting the flow rate. Insulin had no effect on any of the parameters studied. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 038 KW - Urate KW - Allantoin KW - Hepatic nerve KW - Catecholamine KW - Glucagon Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-16728 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Mentlein, Rolf A1 - Heymann, Eberhard T1 - Isolation and characterization of Dipeptidyl Peptidase IV from human placenta N2 - Human placenta is surprisingly rich in post-proline dipeptidyl peptidase activity. Among various cell fractions, microsomes have the highest specific activity. A homogeneous enzyme preparation is obtained in a six-step purification procedure. The final preparation appears homogeneous upon dodecyl sulfate electrophoresis, but analytical isoelectric focussing reveals various active bands with isoelectric points in the range of pH 3 - 4. The enzyme is a glycoprotein containing about 30% carbohydrate. Treatment with neuraminidase lowers the isoelectric points but does not reduce the heterogeneity of the band pattern. The subunit molecular weight is 120000 as estimated by dodecyl sulfate electrophoresis, whereas Mr of the native enzyme is > 200000, as can be concluded from gel filtration experiments. The purified dipeptidyl peptidase cleaves various synthetic and natural peptides, including substance P, kentsin, casomorphin and a synthetic renin inhibitor. In general, the specificity of the placenta peptidase is similar to that of post-proline dipeptidyl peptidase from other sources. Phenylalanylprolyl-P-naphthylamide (Km = 0.02 mM, I/ = 92 Ujmg) is the best substrate among various synthetic peptide derivatives. Only peptides with a free N-terminal amino group and proline, hydroxyproline, or alanine in position 2 of the N-terminal sequence are cieaved. However, X-Pro-Pro- . . . structures, e. g. as in bradykinin, are not attacked. 1 mM bis-(6nitrophenyI)phosphate or 1 mM diisopropylfluorophosphate completely inactivate the peptidase within 30 min at 30°C (pH 8). The peptidase is also completely inhibited by 1 mM Zn²⁺ and by other heavy metals. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 114 Y1 - 1982 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45875 ER - TY - GEN A1 - Püschel, Gerhard Paul A1 - Klauder, Julia A1 - Henkel-Oberländer, Janin T1 - Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1279 KW - NAFLD/MAFLD KW - type 2 diabetes KW - obesity KW - vicious cycle KW - TLR signaling KW - M1/M2 differentiation KW - Akt pathway Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570106 SN - 1866-8372 IS - 1279 SP - 1 EP - 30 ER -