TY - GEN A1 - Barbosa Pfannes, Eva Katharina A1 - Anielski, Alexander A1 - Gerhardt, Matthias A1 - Beta, Carsten T1 - Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells N2 - Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 239 KW - cyclic-gmp KW - dictyostelium-discoideum KW - ena/vasp proteins KW - osmotic-stress KW - chemotaxis KW - phosphorylation KW - amp KW - cytoskeleton KW - oscillations KW - chemoattractant Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94984 SP - 1456 EP - 1463 ER - TY - GEN A1 - Zurnic, Irena A1 - Hütter, Sylvia A1 - Rzeha, Ute A1 - Stanke, Nicole A1 - Reh, Juliane A1 - Müllers, Erik A1 - Hamann, Martin V. A1 - Kern, Tobias A1 - Gerresheim, Gesche K. A1 - Lindel, Fabian A1 - Serrao, Erik A1 - Lesbats, Paul A1 - Engelman, Alan N. A1 - Cherepanov, Peter A1 - Lindemann, Dirk T1 - Interactions of prototype foamy virus capsids with host cell polo-like kinases are important for efficient viral DNA integration T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 580 KW - core protein KW - HIV-1 infection KW - retroviral integration KW - reverse transcription KW - nuclear-localization KW - box domain KW - in-vivo KW - Gag KW - PLK1 KW - phosphorylation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411317 SN - 1866-8372 IS - 580 ER - TY - GEN A1 - Prát, Tomáš A1 - Hajny ́, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnár, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1123 KW - apical-basal axis KW - arabidopsis-thaliana KW - root gravitropism KW - DNA-binding KW - gene-expression KW - transport KW - efflux KW - canalization KW - plants KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446331 SN - 1866-8372 IS - 1123 ER - TY - GEN A1 - Fichtner, Franziska A1 - Olas, Justyna Jadwiga A1 - Feil, Regina A1 - Watanabe, Mutsumi A1 - Krause, Ursula A1 - Hoefgen, Rainer A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Functional features of Trehalose-6-Phosphate Synthase 1 BT - an essential enzyme in Arabidopsis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1432 KW - cyanobacterial sucrose-phosphatase KW - trehalose 6-phosphate KW - vegetative growth KW - crystal-structure KW - gene-expression KW - thaliana KW - metabolism KW - phosphorylation KW - reveals KW - proteins Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516532 SN - 1866-8372 IS - 6 ER -