TY - JOUR A1 - Ziolkowski, Bartosz A1 - Bleek, Katrin A1 - Twamley, Brendan A1 - Fraser, Kevin J. A1 - Byrne, Robert A1 - Diamond, Dermot A1 - Taubert, Andreas T1 - Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator. KW - Magnetic properties KW - Nanotechnology KW - Iron KW - Ionic liquids KW - Ionogels Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201200597 SN - 1434-1948 IS - 32 SP - 5245 EP - 5251 PB - Wiley-VCH CY - Weinheim ER - TY - INPR A1 - Bühler, Markus J. A1 - Rabu, Pierre A1 - Taubert, Andreas T1 - Advanced hybrid materials - design and applications T2 - European journal of inorganic chemistry : a journal of ChemPubSoc Europe Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201201263 SN - 1434-1948 IS - 32 SP - 5092 EP - 5093 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tentschert, J. A1 - Draude, F. A1 - Jungnickel, H. A1 - Haase, A. A1 - Mantion, Alexandre A1 - Galla, S. A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Silver nanoparticles (SNP) are among the most commercialized nanoparticles. Here, we show that peptide-coated SNP cause functional impairment of human macrophages. A dose-dependent inhibition of phagocytosis is observed after nanoparticle treatment, and pretreatment of cells with N-acetyl cysteine (NAC) can counteract the phagocytosis disturbances caused by SNP. Using the surface-sensitive mode of time-of-flight secondary ion mass spectrometry, in combination with multivariate statistical methods, we studied the composition of cell membranes in human macrophages upon exposure to SNP with and without NAC preconditioning. This method revealed characteristic changes in the lipid pattern of the cellular membrane outer leaflet in those cells challenged by SNP. Statistical analyses resulted in 19 characteristic ions, which can be used to distinguish between NAC pretreated and untreated macrophages. The present study discusses the assignments of surface cell membrane phospholipids for the identified ions and the resulting changes in the phospholipid pattern of treated cells. We conclude that the adverse effects in human macrophages caused by SNP can be partially reversed through NAC administration. Some alterations, however, remained. KW - silver nanoparticles KW - lipidomics KW - N-acetyl cysteine KW - phagocytosis KW - oxidative stress Y1 - 2013 U6 - https://doi.org/10.1002/sia.5155 SN - 0142-2421 VL - 45 IS - 1 SP - 483 EP - 485 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Draude, F. A1 - Galla, S. A1 - Pelster, Axel A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Haase, Alfred A1 - Mantion, Alexandre A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas A1 - Luch, A. A1 - Arlinghaus, H. F. T1 - ToF-SIMS and Laser-SNMS analysis of macrophages after exposure to silver nanoparticles JF - Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles because of their antibacterial effects. Besides being employed, e. g. as a coatingmaterial for sterile surfaces in household articles and appliances, the particles are also used in a broad range of medical applications. Their antibacterial properties make SNPs especially useful for wound disinfection or as a coating material for prostheses and surgical instruments. Because of their optical characteristics, the particles are of increasing interest in biodetection as well. Despite the widespread use of SNPs, there is little knowledge of their toxicity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (Laser-SNMS) were used to investigate the effects of SNPs on human macrophages derived from THP-1 cells in vitro. For this purpose, macrophages were exposed to SNPs. The SNP concentration ranges were chosen with regard to functional impairments of the macrophages. To optimize the analysis of the macrophages, a special silicon wafer sandwich preparation technique was employed; ToF-SIMS was employed to characterize fragments originating from macrophage cell membranes. With the use of this optimized sample preparation method, the SNP-exposed macrophages were analyzed with ToF-SIMS and with Laser-SNMS. With Laser-SNMS, the three-dimensional distribution of SNPs in cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. We found an accumulation of SNPs directly beneath the cell membrane in a nanoparticular state as well as agglomerations of SNPs inside the cells. KW - Laser-SNMS KW - ToF-SIMS KW - life sciences KW - imaging KW - nanoparticles KW - three-dimensional depth profiling Y1 - 2013 U6 - https://doi.org/10.1002/sia.4902 SN - 0142-2421 VL - 45 IS - 1 SP - 286 EP - 289 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers JF - RSC Advances N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano) diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. Y1 - 2013 U6 - https://doi.org/10.1039/c3ra23348k SN - 2046-2069 VL - 3 IS - 28 SP - 11301 EP - 11308 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Olu-Owolabi, Bamidele I. A1 - Taubert, Andreas A1 - Omolehin, Elizabeth B. A1 - Adebowale, Kayode O. T1 - SAPK a novel composite resin for water treatment with very high Zn2+, Cd2+, and Pb2+ adsorption capacity JF - Industrial & engineering chemistry research N2 - A new sulfonated aniline-modified poly(vinyl alcohol)/K-feldspar (SAPK) composite was prepared. The cation-exchange capacity of the composite was found to be S times that of neat feldspar. The specific surface area and point of zero charge also changed significantly upon modification, from 15.6 +/- 0.1 m(2)/g and 2.20 (K-feldspar) to 73.6 +/- 0.3 m(2)/g and 1.91 (SAPK). Zn2+, Cd2+, and Pb2+ adsorption was found to be largely independent of pH, and the metal adsorption rate on SAPK was higher than that on neat feldspar. This particularly applies to the initial adsorption rates. The adsorption process involves both film and pore diffusion; film diffusion initially controls the adsorption. The Freundlich and Langmuir models were found to fit metal-ion adsorption on SAPK most accurately. Adsorption on neat feldspar was best fitted with a Langmuir model, indicating the formation of adsorbate monolayers. Both pure feldspar and SAPK showed better selectivity for Pb2+ than for Cd2+ or Zn2+. Y1 - 2013 U6 - https://doi.org/10.1021/ie3024577 SN - 0888-5885 VL - 52 IS - 2 SP - 578 EP - 585 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bleek, Katrin A1 - Taubert, Andreas T1 - New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution JF - Acta biomaterialia N2 - The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations. KW - Calcium phosphate KW - Biomimetics KW - Mineralization KW - Polymers KW - Bioinspired Y1 - 2013 U6 - https://doi.org/10.1016/j.actbio.2012.12.027 SN - 1742-7061 SN - 1878-7568 VL - 9 IS - 5 SP - 6283 EP - 6321 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Günter, Christina A1 - Weber, Jens A1 - Lubahn, Susanne A1 - Taubert, Andreas T1 - Hybrid Clay - a new highly efficient adsorbent for water treatment JF - ACS sustainable chemistry & engineering N2 - New hybrid clay adsorbent based on kaolinite clay and Carica papaya seeds with improved cation exchange capacity (CEC), rate of heavy metal ion uptake, and adsorption capacity for heavy metal ions were prepared. The CEC of the new material is ca. 75 meq/100 g in spite of the unexpectedly low surface area (approximate to 19 m(2)/g). Accordingly, the average particle size of the hybrid clay adsorbent decreased from over 200 to 100 pm. The hybrid clay adsorbent is a highly efficient adsorbent for heavy metals. With an initial metal concentration of 1 mg/L, the hybrid clay adsorbent reduces the Cd2+, Ni2+, and Pb2+ concentration in aqueous solution to <= 4, <= 7 and <= 20 mu g/L, respectively, from the first minute to over 300 min using a fixed bed containing 2 g of adsorbent and a flow rate of approximate to 7 mL/min. These values are (with the exception of Pb2+) in line with the WHO permissible limits for heavy metal ions. In a cocktail solution of Cd2+, and Ni2+, the hybrid clay shows a reduced rate of uptake but an increased adsorption capacity. The CEC data suggest that the adsorption of Pb2+, Cd2+, and Ni2+ on the hybrid clay adsorbent is essentially due to ion exchange. This hybrid clay adsorbent is prepared from materials that are abundant and by a simple means that is sustainable, easily recovered from aqueous solution, nonbiodegradable (unlike numerous biosorbent), and easily regenerated and is a highly efficient alternative to activated carbon for water treatment. KW - Kaolinite KW - Hybrid clay KW - Water treatment KW - Cation exchange Capacity KW - Adsorbent KW - Kinetics Y1 - 2013 U6 - https://doi.org/10.1021/sc400051y SN - 2168-0485 VL - 1 IS - 8 SP - 966 EP - 973 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Bleek, Katrin A1 - Taubert, Andreas T1 - New developments in polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution T2 - Acta biomaterialia Y1 - 2013 U6 - https://doi.org/10.1016/j.actbio.2013.05.007 SN - 1742-7061 VL - 9 IS - 9 SP - 8466 EP - 8466 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Bagdahn, Christian A1 - Taubert, Andreas T1 - Ionogel fiber mats - functional materials via electrospinning of PMMA and the ionic liquid bis(1-butyl-3-methyl-imidazolium) Tetrachloridocuprate(II), [Bmim](2)[CuCl4] JF - Zeitschrift für Naturforschung : B, Chemical sciences N2 - Ionogel fiber mats were made by electrospinning poly(methylmethacrylate) (PMMA) and the ionic liquid (IL) bis(1-butyl-3-methyl-imidazolium) tetrachloridocupraten, [Bmim](2)[CuCl4], from acetone. The morphology of the electrospun ionogels strongly depends on the spinning parameters. Dense and uniform fiber mats were only obtained at concentrations of 60 to 70 g of polymer and IL mass combined. Lower concentrations led to a low number of poorly defined fibers. High voltages of 20 to 25 kV led to well-defined and uniform fibers; voltages between 15 and 20 kV again led to less uniform and less dense fibers. At 10 kV and lower, no spinning could be induced. Finally, PMMA fibers electrospun without IL show a less well-defined morphology combining fibers and oblong droplets indicating that the IL has a beneficial effect on the electrospinning process. The resulting materials are prototypes for new functional materials, for example in sterile filtration. KW - Ionic Liquid KW - Ionogel KW - Electrospinning KW - Fiber KW - Hydrogen Production KW - Filtration Y1 - 2013 U6 - https://doi.org/10.5560/ZNB.2013-3195 SN - 0932-0776 SN - 1865-7117 VL - 68 IS - 10 SP - 1163 EP - 1171 PB - De Gruyter CY - Tübingen ER - TY - JOUR A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetric calcium phosphate nanofibers N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy- filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. Y1 - 2013 UR - http://pubs.rsc.org/en/content/articlepdf/2013/ra/c3ra23348k U6 - https://doi.org/10.1039/c3ra23348k ER - TY - JOUR A1 - Ayi, Ayi A. A1 - Khare, Varsha A1 - Strauch, Peter A1 - Girard, Jèrôme A1 - Fromm, Katharina M. A1 - Taubert, Andreas T1 - On the chemical synthesis of titanium nanoparticles from ionic liquids N2 - We report on attempts towards the synthesis of titanium nanoparticles using a wet chemical approach in imidazolium-based ionic liquids (ILs) under reducing conditions. Transmission electron microscopy finds nanoparticles in all cases. UV/Vis spectroscopy confirms the nanoparticulate nature of the precipitate, as in all cases an absorption band between ca. 280 and 300 nm is visible. IR spectroscopy shows that even after extensive washing and drying, some IL remains adsorbed on the nanoparticles. Raman spectroscopy suggests the formation of anatase nanoparticles, but X-ray diffraction reveals that, possibly, amorphous titania forms or that the nanoparticles are so small that a clear structure assignment is not possible. The report thus shows that (possibly amorphous) titanium oxides even form under reducing conditions and that the chemical synthesis of titanium nanoparticles in ILs remains elusive. Y1 - 2010 UR - http://www.springerlink.com/content/101572 U6 - https://doi.org/10.1007/s00706-010-0403-4 SN - 0026-9247 ER - TY - JOUR A1 - Shkilnyy, Andriy A1 - Gräf, Ralph A1 - Hiebl, Bernhard A1 - Neffe, Axel T. A1 - Friedrich, Alwin A1 - Hartmann, Juergen A1 - Taubert, Andreas T1 - Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites N2 - Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite. The PEI/calcium phosphate composite material exhibits a sponge like morphology and a chemical composition that is interesting for implants. Cytotoxicity tests using Dictyostelium discoideum amoebae show that both the non-mineralized and mineralized hydrogels have a very low cytotoxicity. This suggests that next generation PEI hydrogels, where also the degradation products are non-toxic, could be interesting for biomedical applications. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/77002860 U6 - https://doi.org/10.1002/mabi.200800266 SN - 1616-5187 ER - TY - JOUR A1 - Shkilnyy, Andriy A1 - Brandt, Jessica A1 - Mantion, Alexandre A1 - Paris, Oskar A1 - Schlaad, Helmut A1 - Taubert, Andreas T1 - Calcium phosphate with a channel-like morphology by polymer templating N2 - Calcium phosphate mineralization from aqueous solution in the presence of organic growth modifiers has been intensely studied in the recent past. This is mostly due to potential applications of the resulting composites in the biomaterials field. Polymers in particular are efficient growth modifiers. As a result, there has been a large amount of work on polymeric growth modifiers. Interestingly, however, relatively little work has been done on polycationic additives. The current paper shows that poly(ethylene oxide)b-poly(L-lysine) block copolymers lead to an interesting morphology of calcium phosphate precipitated at room temperature and subjected to a mild heat treatment at 85 degrees C. Electron microscopy, synchrotron X-ray diffraction, and porosity analysis show that a (somewhat) porous material with channel-like features forms. Closer inspection using transmission electron microscopy shows that the channels are probably not real channels. Much rather the morphology is the result of the aggregation of ca. 100-nm-sized rodlike primary particles, which changes upon drying to exhibit the observed channel-like features. Comparison experiments conducted in the absence of polymer and with poly(ethylene oxide)-b-poly(L-glutamate) show that these features only form in the presence of the polycationic poly(L-lysine) block, suggesting a distinct interaction of the polycation with either the crystal or the phosphate ions prior to mineralization. Y1 - 2009 UR - http://pubs.acs.org/journal/cmatex U6 - https://doi.org/10.1021/Cm803244z SN - 0897-4756 ER - TY - JOUR A1 - Navarro, Salvador A1 - Shkilnyy, Andriy A1 - Tiersch, Brigitte A1 - Taubert, Andreas A1 - Menzel, Henning T1 - Preparation, characterization, and thermal gelation of amphiphilic alkyl-poly(ethyleneimine) N2 - Amphiphilic alkyl-poly(ethyleneimine)s (alkyl-PEI) with different degrees of polymerization have been produced by alkaline hydrolysis of alkyl-poly(2-methyl-2-oxazoline). Potentiometric titration of the alkyl-PEI shows the influence of the alkyl chain and the degree of polymerization on the titration curves and hence on the polymer conformation. Karl Fischer titration has been used to determine the water content in the polymers. Subsequent X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) measurements prove the existence of different hydration states of the PEI even under dry storage conditions. Upon cooling from hot aqueous Solutions, hydrogels form. The gelation concentration decreases with increasing degree of polymerization of the PEI segment. Scanning electron microscopy (SEM and cryo-SEM) of the hydrogels reveal an alkyl-PEI fibrous network composed of fan-like units. DSC shows that the percentages of bound and free water in the hydrogels depend on the concentration of polar amino groups. Y1 - 2009 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La9013569 SN - 0743-7463 ER - TY - JOUR A1 - Kind, Lucy A1 - Plamper, Felix A. A1 - Goebel, Ronald A1 - Mantion, Alexandre A1 - Mueller, Axel H. E. A1 - Pieles, Uwe A1 - Taubert, Andreas A1 - Meier, Wolfgang P. T1 - Silsesquioxane/polyamine nanoparticle-templated formation of star- or raspberry-like silica nanoparticles N2 - Silica is an important mineral in biology and technology, and many protocols have been developed for the synthesis of complex silica architectures. The current report shows that silsesquioxane nanoparticles carrying polymer arms on their surface are efficient templates for the fabrication of silica particles with a star- or raspberry-like morphology. The shape of the resulting particles depends on the chemistry of the polymer arms. With poly(N,N- dimethylaminoethyl methacrylate) (PDMAEMA) arms, spherical particles with a less electron dense core form. With poly {[2- (methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI), star- or raspberry-like particles form. Electron microscopy, electron tomography, and small-angle X-ray scattering show that the resulting silica particles have a complex structure, where a silsequioxane nanoparticle carrying the polymer arms is in the center. Next is a region that is polymer-rich. The outermost region of the particle is a silica layer, where the outer parts of the polymer arms are embedded. Time- resolved zeta-potential and pH measurements, dynamic light scattering, and electron microscopy reveal that silica formation proceeds differently if PDMAEMA is exchanged for PMETAI. Y1 - 2009 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La900229n SN - 0743-7463 ER - TY - JOUR A1 - Graf, Philipp A1 - Mantion, Alexandre A1 - Foelske, Annette A1 - Shkilnyy, Andriy A1 - MaÜic, Admir A1 - Thuenemann, Andreas F. A1 - Taubert, Andreas T1 - Peptide-coated silver nanoparticles : synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies N2 - Simple tripeptides are scaffolds for the synthesis and further assembly of peptide/silver nanoparticle composites. Herein, we further explore peptide-con trolled silver nanoparticle assembly processes. Silver nanoparticles with a pH-responsive peptide coating have been synthesized by using a one-step precipitation/coating route. The nature of the peptide/silver interaction and the effect of the peptide oil the formation of the silver particles have been studied via UV/Vis, X-ray photoelectron, and surface-enhanced Raman spectroscopies as well as through electron microscopy, small angle X-ray scattering and powder Xray diffraction with Rietveld refinement. The particles reversibly form aggregates of different sizes in aqueous solution. The state of aggregation call be controlled by the solution pH value. At low pH values, individual particles are present. At neutral pH values, small clusters form and at high pH values, large precipitates are observed. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/26293/ U6 - https://doi.org/10.1002/chem.200802329 SN - 0947-6539 ER - TY - JOUR A1 - Goebel, Ronald A1 - Hesemann, Peter A1 - Weber, Jens A1 - Moeller, Eléonore A1 - Friedrich, Alwin A1 - Beuermann, Sabine A1 - Taubert, Andreas T1 - Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids N2 - Mesoporous silica monoliths were prepared by the sol - gel technique and. lled with 1-ethyl-3-methyl imidazolium [Emim]-X (X = dicyanamide [N(CN)(2)], ethyl sulfate [EtSO4], thiocyanate [SCN], and triflate [TfO]) ionic liquids (ILs) using a methanol-IL exchange technique. The structure and behavior of the ILs inside the silica monoliths were studied using X-ray scattering, nitrogen sorption, IR spectroscopy, solid-state NMR, and thermal analysis. DSC finds shifts in both the glass transition temperature and melting points (where applicable) of the ILs. Glass transition and melting occur well below room temperature. There is thus no conflict with the NMR and IR data, which show that the ILs are as mobile at room temperature as the bulk (not confined) ILs. The very narrow line widths of the NMR spectra suggest that the ILs in our materials have the highest mobility reported for confined ILs so far. As a result, our data suggest that it is possible to generate IL/silica hybrid materials (ionogels) with bulk-like properties of the IL. This could be interesting for applications in, e.g., the solar cell or membrane fields. Y1 - 2009 UR - http://xlink.rsc.org/jumptojournal.cfm?journal_code=CP U6 - https://doi.org/10.1039/B821833a SN - 1463-9076 ER - TY - JOUR A1 - Schweizer, S. A1 - Schuster, T. A1 - Junginger, Matthias A1 - Siekmeyer, Gerd A1 - Taubert, Andreas T1 - Surface modification of ickel/Titanium Alloy and Titanium Surfaces via a Polyelectrolyte Multilayer/Calcium Phosphate Hybrid Coating N2 - The report shows that simple LbL deposition of positively charged chitosan and negatively charged heparin can be used to efficiently modify the native surface of both NiTi and Ti without any previous treatments. Moreover, mineralization of the polymer multilayers with calcium phosphate leads to surfaces with low contact angles around 70 and 20 degrees for NiTi and Ti, respectively. This suggests that a polymer multilayer/calcium phosphate hybrid coating could be useful for making NiTi or Ti implants that are at the same time antibacterial (via the chitosan), suppress blood clot formation (via the heparin), and favor fast endothelialization (via the improved surface hydrophilicity compared to the respective neat material). Y1 - 2010 UR - http://onlinelibrary.wiley.com/doi/10.1002/mame.200900347/pdf U6 - https://doi.org/10.1002/mame.200900347 SN - 1438-7492 ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Jelicic, Aleksandra A1 - Wang, Feipeng A1 - Rabu, Pierre A1 - Friedrich, Alwin A1 - Beuermann, Sabine A1 - Taubert, Andreas T1 - Transparent, flexible, and paramagnetic ionogels based on PMMA and the iron-based ionic liquid 1-butyl-3- methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] N2 - The iron-containing ionic liquid (IL) 1-butyl-3-methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] has been used as a building block in the synthesis of transparent, ion-conducting, and paramagnetic ionogels. UV/Vis spectroscopy shows that the coordination around the Fe(III) ion does slightly change upon incorporation of the IL into PMMA. The thermal stability of the PMMA increases significantly with IL incorporation. In particular, the onset weight loss observed at ca. 265 degrees C for pure PMMA is completely suppressed. The ionic conductivity shows a strong temperature dependence and increases with increasing IL weight fractions. The magnetic properties are similar to those reported for the pure IL and are not affected by the incorporation into the PMMA matrix. The resulting ionogel is thus an interesting prototype for soft, flexible, and transparent materials combining the mechanical properties of the matrix with the functionality of the metal-containing IL, such as magnetism. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/jm/index.asp U6 - https://doi.org/10.1039/C0jm01733g SN - 0959-9428 ER - TY - GEN A1 - Xie, Zai-Lai A1 - Huang, Xing A1 - Titirici, Maria-Magdalena A1 - Taubert, Andreas T1 - Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal N2 - The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 283 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99427 ER - TY - GEN A1 - Junginger, Mathias A1 - Kübel, Christian A1 - Schacher, Felix H. A1 - Müller, Axel H. E. A1 - Taubert, Andreas T1 - Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers N2 - Calcium phosphate nanofibers with a diameter of only a few nanometers and a cotton-ball-like aggregate morphology have been reported several times in the literature. Although fiber formation seems reproducible in a variety of conditions, the crystal structure and chemical composition of the fibers have been elusive. Using scanning transmission electron microscopy, low dose electron (nano)diffraction, energy-dispersive X-ray spectroscopy, and energy-filtered transmission electron microscopy, we have assigned crystal structures and chemical compositions to the fibers. Moreover, we demonstrate that the mineralization process yields true polymer/calcium phosphate hybrid materials where the block copolymer template is closely associated with the calcium phosphate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 244 KW - air-water-interface KW - polycationic monolayer KW - mineralization beneath KW - block-copolymers KW - aqueous-solution KW - morphology KW - orthophosphates KW - biomaterials KW - nucleation KW - clusters Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95176 SP - 11301 EP - 11308 ER - TY - GEN A1 - Winter, Alette A1 - Thiel, Kerstin A1 - Zabel, André A1 - Klamroth, Tillmann A1 - Pöppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II) – structure and EPR spectroscopy BT - Part 2: tetrachloridocuprates(II) N2 - We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4]2− moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium)tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4]2− anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g∥ and g⊥, could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 240 KW - electron-spin resonance KW - liquid-crystal precursors KW - copper(II) halide salts KW - ionic liquid KW - square planar KW - tetrachlorocuprate(II) salts KW - molecular-structure KW - magnetic-properties KW - paramagnetic-resonance KW - temperature phase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95012 SP - 1019 EP - 1030 ER - TY - JOUR A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Börner, Hans Gerhard A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization BT - effect of oligo(aspartic acid)-rich interfaces JF - CrystEngComm N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air–water and air–buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression–expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. Y1 - 2015 U6 - https://doi.org/10.1039/C4CE02274B SN - 1466-8033 IS - 17 SP - 6901 EP - 6913 PB - Royal Society of Chemistry CY - London ER - TY - GEN A1 - Hentrich, Doreen A1 - Junginger, Mathias A1 - Bruns, Michael A1 - Börner, Hans Gerhard A1 - Brandt, Jessica A1 - Brezesinski, Gerald A1 - Taubert, Andreas T1 - Interface-controlled calcium phosphate mineralization BT - effect of oligo(aspartic acid)-rich interfaces N2 - The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air–water and air–buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression–expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 213 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89540 SP - 6901 EP - 6913 ER - TY - JOUR A1 - Mai, Tobias A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Völkel, Antje A1 - Gräwert, Marlies A1 - Günter, Christina A1 - Lederer, Albena A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization JF - RSC Advances : an international journal to further the chemical sciences N2 - The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol−1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol−1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution. Y1 - 2015 U6 - https://doi.org/10.1039/c5ra20035k SN - 2046-2069 IS - 5 SP - 103494 EP - 103505 PB - RSC Publishing CY - London ER - TY - GEN A1 - Mai, Tobias A1 - Boye, Susanne A1 - Yuan, Jiayin A1 - Völkel, Antje A1 - Gräwert, Marlies A1 - Günter, Christina A1 - Lederer, Albena A1 - Taubert, Andreas T1 - Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization N2 - The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol−1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol−1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 208 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85299 ER - TY - JOUR A1 - Kirchhecker, Sarah A1 - Tröger-Müller, Steffen A1 - Bake, Sebastian A1 - Antonietti, Markus A1 - Taubert, Andreas A1 - Esposito, Davido T1 - Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions JF - Green chemistry N2 - Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counterions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling. Y1 - 2015 U6 - https://doi.org/10.1039/c5gc00913h SN - 1463-9262 SN - 1463-9270 VL - 8 IS - 17 SP - 4151 EP - 4156 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Kirchhecker, Sarah A1 - Tröger-Müller, Steffen A1 - Bake, Sebastian A1 - Antonietti, Markus A1 - Taubert, Andreas A1 - Esposito, Davido T1 - Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions N2 - Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counterions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 198 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-81390 ER - TY - GEN A1 - Jeličić, Aleksandra A1 - Friedrich, Alwin A1 - Jeremić, Katarina A1 - Siekmeyer, Gerd A1 - Taubert, Andreas T1 - Polymer hydrogel/polybutadiene/iron oxide nanoparticle hybrid actuators for the characterization of NiTi implants N2 - One of the main issues with the use of nickel titanium alloy (NiTi) implants in cardiovascular implants (stents) is that these devices must be of very high quality in order to avoid subsequent operations due to failing stents. For small stents with diameters below ca. 2 mm, however, stent characterization is not straightforward. One of the main problems is that there are virtually no methods to characterize the interior of the NiTi tubes used for fabrication of these tiny stents. The current paper reports on a robust hybrid actuator for the characterization of NiTi tubes prior to stent fabrication. The method is based on a polymer/hydrogel/magnetic nanoparticle hybrid material and allows for the determination of the inner diameter at virtually all places in the raw NiTi tubes. Knowledge of the inner structure of the raw NiTi tubes is crucial to avoid regions that are not hollow or regions that are likely to fail due to defects inside the raw tube. The actuator enables close contact of a magnetic polymer film with the inner NiTi tube surface. The magnetic signal can be detected from outside and be used for a direct mapping of the tube interior. As a result, it is possible to detect critical regions prior to expensive and slow stent fabrication processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 161 KW - NiTi KW - inner surface KW - hydrogel KW - polybutadiene KW - magnetic nanoparticles Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48589 ER - TY - GEN A1 - Li, Zhonghao A1 - Taubert, Andreas T1 - Cellulose/gold nanocrystal hybrids via an ionic liquid/aqueous precipitation route N2 - Injection of a mixture of HAuCl4 and cellulose dissolved in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride [Bmim]Cl into aqueous NaBH4 leads to colloidal gold nanoparticle/cellulose hybrid precipitates. This process is a model example for a very simple and generic approach towards (noble) metal/cellulose hybrids, which could find applications in sensing, sterile filtration, or as biomaterials. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 135 KW - Cellulose KW - Gold nanoparticles KW - Ionic liquid KW - Precipitation KW - Hybrid material Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45046 ER -