TY - JOUR A1 - Ehlert, Christopher A1 - Klamroth, Tillmann T1 - PSIXAS: A Psi4 plugin for efficient simulations of X-ray absorption spectra based on the transition-potential and Delta-Kohn-Sham method JF - Journal of computational chemistry : organic, inorganic, physical, biological N2 - Near edge X-ray absorption fine structure (NEXAFS) spectra and their pump-probe extension (PP-NEXAFS) offer insights into valence- and core-excited states. We present PSIXAS, a recent implementation for simulating NEXAFS and PP-NEXAFS spectra by means of the transition-potential and the Delta-Kohn-Sham method. The approach is implemented in form of a software plugin for the Psi4 code, which provides access to a wide selection of basis sets as well as density functionals. We briefly outline the theoretical foundation and the key aspects of the plugin. Then, we use the plugin to simulate PP-NEXAFS spectra of thymine, a system already investigated by others and us. It is found that larger, extended basis sets are needed to obtain more accurate absolute resonance positions. We further demonstrate that, in contrast to ordinary NEXAFS simulations, where the choice of the density functional plays a minor role for the shape of the spectrum, for PP-NEXAFS simulations the choice of the density functional is important. Especially hybrid functionals (which could not be used straightforwardly before to simulate PP-NEXAFS spectra) and their amount of "Hartree-Fock like" exact exchange affects relative resonance positions in the spectrum. KW - transition-potential method KW - X-ray absorption KW - spectroscopy KW - Delta-Kohn-Sham Y1 - 2020 U6 - https://doi.org/10.1002/jcc.26219 SN - 0192-8651 SN - 1096-987X VL - 41 IS - 19 SP - 1781 EP - 1789 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Gonzalez-Chavarria, Ivan A1 - Duprat, Felix A1 - Roa, Francisco J. A1 - Jara, Nery A1 - Toledo, Jorge R. A1 - Miranda, Felipe A1 - Becerra, Jose A1 - Inostroza, Alejandro A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Heydenreich, Matthias A1 - Paz, Cristian T1 - Maytenus disticha extract and an isolated β-Dihydroagarofuran induce mitochondrial depolarization and apoptosis in human cancer cells by increasing mitochondrial reactive oxygen species JF - Biomolecules N2 - Maytenus disticha (Hook F.), belonging to the Celastraceae family, is an evergreen shrub, native of the central southern mountains of Chile. Previous studies demonstrated that the total extract of M. disticha (MD) has an acetylcholinesterase inhibitory activity along with growth regulatory and insecticidal activities. beta-Dihydroagarofurans sesquiterpenes are the most active components in the plant. However, its activity in cancer has not been analyzed yet. Here, we demonstrate that MD has a cytotoxic activity on breast (MCF-7), lung (PC9), and prostate (C4-2B) human cancer cells with an IC50 (mu g/mL) of 40, 4.7, and 5 mu g/mL, respectively, an increasing Bax/Bcl2 ratio, and inducing a mitochondrial membrane depolarization. The beta-dihydroagarofuran-type sesquiterpene (MD-6), dihydromyricetin (MD-9), and dihydromyricetin-3-O-beta-glucoside (MD-10) were isolated as the major compounds from MD extracts. From these compounds, only MD-6 showed cytotoxic activity on MCF-7, PC9, and C4-2B with an IC50 of 31.02, 17.58, and 42.19 mu M, respectively. Furthermore, the MD-6 increases cell ROS generation, and MD and MD-6 induce a mitochondrial superoxide generation and apoptosis on MCF-7, PC9, and C4-2B, which suggests that the cytotoxic effect of MD is mediated in part by the beta-dihydroagarofuran-type that induces apoptosis by a mitochondrial dysfunction. KW - Maytenus disticha KW - beta-dihydroagarofuran-type sesquiterpene KW - dihydromyricetin KW - dihydromyricetin-3-O-beta-glucoside KW - cytotoxic KW - activity KW - Mitochondrial ROS Y1 - 2020 U6 - https://doi.org/10.3390/biom10030377 SN - 2218-273X VL - 10 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Chen, Lu A1 - Yan, Runyu A1 - Oschatz, Martin A1 - Jiang, Lei A1 - Antonietti, Markus A1 - Xiao, Kai T1 - Ultrathin 2D graphitic carbon nitride on metal films BT - underpotential sodium deposition in adlayers for sodium-ion batteries JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Efficient and low-cost anode materials for the sodium-ion battery are highly desired to enable more economic energy storage. Effects on an ultrathin carbon nitride film deposited on a copper metal electrode are presented. The combination of effects show an unusually high capacity to store sodium metal. The g-C3N4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical-vapor deposition method. A high reversible capacity of formally up to 51 Ah g(-1) indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na-deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte. KW - 2D films KW - carbon nitride KW - chemical vapor deposition KW - sodium-ion KW - batteries KW - underpotential deposition Y1 - 2020 U6 - https://doi.org/10.1002/anie.202000314 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 23 SP - 9067 EP - 9073 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hechenbichler, Michelle A1 - Laschewsky, Andre A1 - Gradzielski, Michael T1 - Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs JF - Colloid and polymer science N2 - Poly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)-type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 degrees C for 1 wt% solutions. This rise is attributed to the polymers' hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 degrees C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 degrees C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 degrees C. KW - polyacrylamide KW - water-soluble polymers KW - responsive systems KW - lower KW - critical solution temperature KW - polymer amphiphile Y1 - 2020 U6 - https://doi.org/10.1007/s00396-020-04701-9 SN - 0303-402X SN - 1435-1536 VL - 299 IS - 2 SP - 205 EP - 219 PB - Springer CY - Berlin; Heidelberg ER - TY - JOUR A1 - Mehr, Fatemeh Naderi A1 - Grigoriev, Dmitry A1 - Heaton, Rebecca A1 - Baptiste, Joshua A1 - Stace, Anthony J. A1 - Puretskiy, Nikolay A1 - Besley, Elena A1 - Böker, Alexander T1 - Self-assembly behavior of oppositely charged inverse bipatchy microcolloids JF - Small : nano micro N2 - A directed attractive interaction between predefined "patchy" sites on the surfaces of anisotropic microcolloids can provide them with the ability to self-assemble in a controlled manner to build target structures of increased complexity. An important step toward the controlled formation of a desired superstructure is to identify reversible electrostatic interactions between patches which allow them to align with one another. The formation of bipatchy particles with two oppositely charged patches fabricated using sandwich microcontact printing is reported. These particles spontaneously self-aggregate in solution, where a diversity of short and long chains of bipatchy particles with different shapes, such as branched, bent, and linear, are formed. Calculations show that chain formation is driven by a combination of attractive electrostatic interactions between oppositely charged patches and the charge-induced polarization of interacting particles. KW - electrostatic interactions KW - patchy particles KW - polyelectrolyte inks KW - sandwich microcontact printing KW - self-assembly Y1 - 2020 U6 - https://doi.org/10.1002/smll.202000442 SN - 1613-6810 SN - 1613-6829 VL - 16 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Actuators based on oligo[(epsilon-caprolactone)-co-glycolide] with accelerated hydrolytic degradation JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - Polyester-based shape-memory polymer actuators are multifunctional materials providing reversible macroscopic shape shifts as well as hydrolytic degradability. Here, the function-function interdependencies (between shape shifts and degradation behaviour) will determine actuation performance and its life time. In this work, glycolide units were incorporated in poly(epsilon-caprolactone) based actuator materials in order to achieve an accelerated hydrolytic degradation and to explore the function-function relationship. Three different oligo[(epsilon-caprolactone)-co-glycolide] copolymers (OCGs) with similar molecular weights (10.5 +/- 0.5 kg center dot mol(-1)) including a glycolide content of 8, 16, and 26 mol% (ratio 1:1:1 wt%) terminated with methacrylated moieties were crosslinked. The obtained actuators provided a broad melting transition in the range from 27 to 44 degrees C. The hydrolytic degradation of programmed OCG actuators (200% of elongation) resulted in a reduction of sample mass to 51 wt% within 21 days at pH = 7.4 and 40 degrees C. Degradation results in a decrease of T-m associated to the actuating units and increasing T-m associated to the skeleton forming units. The actuation capability decreased almost linear as function of time. After 11 days of hydrolytic degradation the shape-memory functionality was lost. Accordingly, a fast degradation behaviour as required, e.g., for actuator materials intended as implant material can be realized. KW - actuation KW - shape memory KW - polymer KW - crystalline Y1 - 2020 U6 - https://doi.org/10.1557/adv.2019.447 SN - 2059-8521 VL - 5 IS - 12-13 SP - 655 EP - 666 PB - Cambridge University Press CY - New York, NY ER - TY - JOUR A1 - Izraylit, Victor A1 - Hommes-Schattmann, Paul J. A1 - Neffe, Axel T. A1 - Gould, Oliver E. C. A1 - Lendlein, Andreas T1 - Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes JF - European polymer journal N2 - Sustainable multifunctional alternatives to fossil-derived materials, which can be functionalized and are degradable, can be envisioned by combining naturally derived starting materials with an established polymer design concept. Modularity and chemical flexibility of polyester urethanes (PEU) enable the combination of segments bearing functionalizable moieties and the tailoring of the mechanical and thermal properties. In this work, a PEU multiblock structure was synthesized from naturally derived L-lysine diisocyanate ethyl ester (LDI), poly(L-lactide) diol (PLLA) and N-(2,3-dihydroxypropyl)-maleimide (MID) in a one-step reaction. A maleimide side-chain (MID) provided a reactive site for the catalyst-free coupling of thiols shown for L-cysteine with a yield of 94%. Physical cross-links were generated by blending the PEU with poly(D-lactide) (PDLA), upon which the PLLA segments of the PEU and the PDLA formed stereocomplexes. Stereocomplexation occurred spontaneously during solution casting and was investigated with WAXS and DSC. Stereocomplex crystallites were observed in the blends, while isotactic PLA crystallization was not observed. The presented material platform with tailorable mechanical properties by blending is of specific interest for engineering biointerfaces of implants or carrier systems for bioactive molecules. KW - Functionalization KW - Polylactide stereocomplex KW - Biomolecules coupling Y1 - 2020 U6 - https://doi.org/10.1016/j.eurpolymj.2020.109916 SN - 0014-3057 SN - 1873-1945 VL - 137 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Izraylit, Victor A1 - Hommes-Schattmann, Paul Jacob A1 - Neffe, Axel T. A1 - Gould, Oliver E. C. A1 - Lendlein, Andreas T1 - Alkynyl-functionalized chain-extended PCL for coupling to biological molecules JF - European polymer journal N2 - Chemical functionalization of poly(epsilon-caprolactone) (PCL) enables a molecular integration of additional function. Here, we report an approach to incorporate reactive alkynyl side-groups by synthesizing a chain-extended PCL, where the reactive site is introduced through the covalently functionalizable chain extender 3 (prop-2-yn-1-yloxy)propane-1,2-diol (YPD). Chain-extended PCL with M-w of 101 to 385 kg.mol(-1) were successfully synthesized in a one-pot reaction from PCL-diols with various molar masses, L-lysine ethyl ester diisocyanate (LDI) or trimethyl(hexamethylene)diisocyanate (TMDI), and YPD, in which the density of functionalizable groups and spacing between them can be controlled by the composition of the polymer. The employed diisocyanate compounds and YPD possess an asymmetric structure and form a non-crystallizable segment leaving the PCL crystallites to dominate the material's mechanical properties. The mixed glass transition temperature T-g = - 60 to - 46 degrees C of the PCL/polyurethane amorphous phase maintains the synthesized materials in a highly elastic state at ambient and physiological conditions. Reaction conditions for covalent attachment in copper(I)-catalyzed azide-alkyne-cycloaddition reactions (CuAAC) in solution were optimized in a series of model reactions between the alkyne moieties of the chain-extended PCL and benzyl azide, reaching conversions over 95% of the alkyne moieties and with yields of up to 94% for the purified functionalized PCL. This methodology was applied for reaction with the azide-functionalized cell adhesion peptide GRGDS. The required modification of the peptide provides selectivity in the coupling reactions. The obtained results suggest that YPD could potentially be employed as versatile molecular unit for the creation of a variety of functionalizable polyesters as well as polyurethanes and polycarbonates offering efficient and selective click-reactions. KW - copper-catalyzed alkyne-azide cycloaddition KW - chain-extended KW - polycaprolactone KW - RGD-peptide KW - side-chains functionalization Y1 - 2020 U6 - https://doi.org/10.1016/j.eurpolymj.2020.109908 SN - 0014-3057 SN - 1873-1945 VL - 136 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Laroque, Sophie A1 - Reifarth, Martin A1 - Sperling, Marcel A1 - Kersting, Sebastian A1 - Kloepzig, Stefanie A1 - Budach, Patrick A1 - Hartlieb, Matthias A1 - Storsberg, Joachim T1 - Impact of multivalence and self-assembly in the design of polymeric antimicrobial peptide mimics JF - ACS applied materials & interfaces N2 - Antimicrobial resistance is an increasingly serious challenge for public health and could result in dramatic negative consequences for the health care sector during the next decades. To solve this problem, antibacterial materials that are unsusceptible toward the development of bacterial resistance are a promising branch of research. In this work, a new type of polymeric antimicrobial peptide mimic featuring a bottlebrush architecture is developed, using a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening metathesis polymerization (ROMP). This approach enables multivalent presentation of antimicrobial subunits resulting in improved bioactivity and an increased hemocompatibility, boosting the selectivity of these materials for bacterial cells. Direct probing of membrane integrity of treated bacteria revealed highly potent membrane disruption caused by bottlebrush copolymers. Multivalent bottlebrush copolymers clearly outperformed their linear equivalents regarding bioactivity and selectivity. The effect of segmentation of cationic and hydrophobic subunits within bottle brushes was probed using heterograft copolymers. These materials were found to self-assemble under physiological conditions, which reduced their antibacterial activity, highlighting the importance of precise structural control for such applications. To the best of our knowledge, this is the first example to demonstrate the positive impact of multivalence, generated by a bottlebrush topology in polymeric antimicrobial peptide mimics, making these polymers a highly promising material platform for the design of new bactericidal systems. KW - RAFT polymerization KW - ROMP KW - antimicrobial polymers KW - antimicrobial peptide KW - mimics KW - bottlebrush copolymers Y1 - 2020 U6 - https://doi.org/10.1021/acsami.0c05944 SN - 1944-8244 SN - 1944-8252 VL - 12 IS - 27 SP - 30052 EP - 30065 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bouakline, Foudhil A1 - Tremblay, Jean Christophe T1 - Is it really possible to control aromaticity of benzene with light? JF - Physical chemistry, chemical physics : PCCP N2 - Recent theoretical investigations claim that tailored laser pulses may selectively steer benzene's aromatic ground state to localized non-aromatic excited states. For instance, it has been shown that electronic wavepackets, involving the two lowest electronic eigenstates, exhibit subfemtosecond charge oscillation between equivalent Kekule resonance structures. In this contribution, we show that such dynamical electron-localization in the molecule-fixed frame contravenes the principle of the indistinguishability of identical particles. This breach stems from a total omission of the nuclear degrees of freedom, giving rise to nonsymmetric electronic wavepackets under nuclear permutations. Enforcement of the latter leads to entanglement between the electronic and nuclear states. To obey quantum statistics, the entangled molecular states should involve compensating nuclear-permutation symmetries. This in turn engenders complete quenching of dynamical electron-localization in the molecule-fixed frame. Indeed, for the (six-fold) equilibrium geometry of benzene, group-theoretic analysis reveals that any electronic wavepacket exhibits a (D-6h) totally symmetric electronic density, at all times. Thus, our results clearly show that the six carbon atoms, and the six C-C bonds, always have equal Mulliken charges, and equal bond orders, respectively. However, electronic wavepackets may display dynamical localization of the electronic density in the space-fixed frame, whenever they involve both even and odd space-inversion (parity) or permutation-inversion symmetry. Dynamical spatial-localization can be probed experimentally in the laboratory frame, but it should not be deemed equivalent to charge oscillation between benzene's identical electronic substructures, such as Kekule resonance structures. Y1 - 2020 U6 - https://doi.org/10.1039/c9cp06794a SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 27 SP - 15401 EP - 15412 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Behl, Marc A1 - Razzaq, Muhammad Yasar A1 - Mazurek-Budzynska, Magdalena A1 - Lendlein, Andreas T1 - Polyetheresterurethane based porous scaffolds with tailorable architectures by supercritical CO2 foaming JF - MRS advances N2 - Porous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2(scCO(2)) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100-800 mu m along with a porosity in the range from (19 +/- 3 to 61 +/- 6)% and interconnectivity of up to 82%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO(2)foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options. Y1 - 2020 U6 - https://doi.org/10.1557/adv.2020.345 SN - 2059-8521 VL - 5 IS - 45 SP - 2317 EP - 2330 PB - Cambridge University Press CY - New York, NY ER - TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Shape-memory actuation of individual micro-/nanofibers JF - MRS Advances N2 - Advances in the fabrication and characterization of polymeric nanomaterials has greatly advanced the miniaturization of soft actuators, creating materials capable of replicating the functional physical behavior previously limited to the macroscale. Here, we demonstrate how a reversible shape-memory polymer actuation can be generated in a single micro/nano object, where the shape change during actuation of an individual fiber can be dictated by programming using an AFM-based method. Electrospinning was used to prepare poly(epsilon-caprolactone) micro-/nanofibers, which were fixed and crosslinked on a structured silicon wafer. The programming as well as the observation of recovery and reversible displacement of the fiber were performed by vertical three point bending, using an AFM testing platform introduced here. A plateau tip was utilized to improve the stability of the fiber contact and working distance, enabling larger deformations and greater rbSMPA performance. Values for the reversible elongation of epsilon(rev)= 3.4 +/- 0.1% and 10.5 +/- 0.1% were obtained for a single micro (d = 1.0 +/- 0.2 mu m) and nanofiber (d = 300 +/- 100 nm) in cyclic testing between the temperatures 10 and 60 degrees C. The reversible actuation of the nanofiber was successfully characterized for 10 cycles. The demonstration and characterization of individual shape-memory nano and microfiber actuators represents an important step in the creation of miniaturized robotic devices capable of performing complex physical functions at the length scale of cells and structural component of the extracellular matrix. Y1 - 2020 U6 - https://doi.org/10.1557/adv.2020.276 SN - 2059-8521 VL - 5 IS - 46-47 SP - 2391 EP - 2399 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Henning, Ricky A1 - Liebig, Ferenc A1 - Prietzel, Claudia Christina A1 - Klemke, Bastian A1 - Koetz, Joachim T1 - Gold nanotriangles with magnetite satellites JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - This work describes the synthesis of hybrid particles of gold nanotriangles (AuNTs) with magnetite nanoparticles (MNPs) by using 1-mercaptopropyl-3-trimethoxysilan (MPTMS) and L-cysteine as linker molecules. Due to the combination of superparamagnetic properties of MNPs with optical properties of the AuNTs, nanoplatelet-satellite hybrid nanostructures with combined features become available. By using MPTMS with silan groups as linker molecule a magnetic "cloud" with embedded AuNTs can be separated. In presence of L-cysteine as linker molecule at pH > pH(iso) a more unordered aggregate structure of MNPs is obtained due to the dimerization of the L-cysteine. At pH < pH(iso) water soluble positively charged AuNTs with satellite MNPs can be synthesized. The time-dependent loading with MNP satellites under release of the extinction and magnetization offer a hybrid material, which is of special relevance for biomedical applications and plasmonic catalysis. KW - nanotriangles KW - Superparamagnetic magnetite KW - Satellite hybrid KW - nanostructures KW - L-Cysteine KW - UV-Vis-NIR KW - HRTEM Y1 - 2020 U6 - https://doi.org/10.1016/j.colsurfa.2020.124913 SN - 0927-7757 SN - 1873-4359 VL - 600 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bastian, Philipp U. A1 - Nacak, Selma A1 - Roddatis, Vladimir A1 - Kumke, Michael Uwe T1 - Tracking the motion of lanthanide ions within core-shell-shell NaYF4 nanocrystals via resonance energy transfer JF - The journal of physical chemistry : C N2 - Lanthanide resonance energy transfer (LRET) was used to investigate the motion of dopant ions during the synthesis of core-shell-shell-nanocrystals (NCs) that are frequently used as frequency upconversion materials. Reaction conditions (temperature, solvent) as well as lattice composition and precursors were adapted from a typical hydrothermal synthesis approach used to obtain upconversion nanoparticles (UCNPs). Instead of adding the lanthanide ions Yb3+/Er3+ as the sensitizer/activator couple, Eu3+/Nd3+ as the donor/acceptor were added as the LRET pair to the outer shell (Eu-3) and the core (Nd-3). By tailoring the thickness of the insulation shell ("middle shell"), the expected distance between the donor and the acceptor was increased beyond 2 R-0, a distance for which no LRET is expected. The successful synthesis of core- shell-shell NCs with different thicknesses of the insulation layer was demonstrated by high-resolution transmission electron microscopy measurement. The incorporation of the Eu3+ ions into the NaYF4 lattice was investigated by high-resolution time-resolved luminescence measurements. Two major Eu3+ species (bulk and surface) were found. This was supported by steady-state as well as time-resolved luminescence data. Based on the luminescence decay kinetics, the intermixing of lanthanides during synthesis of core- shell UCNPs was evaluated. The energy transfer between Eu3+ (donor) and Nd3+ (acceptor) ions was exploited to quantify the motion of the dopant ions. This investigation reveals the migration of Ln(3+) ions between different compatiments in core-shell NCs and affects the concept of using core-shell architectures to increase the efficiency of UCNPs. In order to obtain well-separated core and shell structures with different dopants, alternative concepts are needed. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c02588 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 20 SP - 11229 EP - 11238 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Das, Abhijna A1 - Noack, Sebastian A1 - Schlaad, Helmut A1 - Reiter, Günter A1 - Reiter, Renate T1 - Exploring pathways to equilibrate Langmuir polymer films JF - Langmuir N2 - Focusing on the phase-coexistence region in Langmuir films of poly(L-lactide), we investigated changes in nonequilibrated morphologies and the corresponding features of the isotherms induced by different experimental pathways of lateral compression and expansion. In this coexistence region, the surface pressure II was larger than the expected equilibrium value and was found to increase upon compression, i.e., exhibited a nonhorizontal plateau. As shown earlier by using microscopic techniques [Langmuir 2019, 35, 6129-6136], in this plateau region, well-ordered mesoscopic clusters coexisted with a surrounding matrix phase. We succeeded in reducing Pi either by slowing down the rate of compression or through increasing the waiting time after stopping the movement of the barriers, which allowed for relaxations in the coexistence region. Intriguingly, the most significant pressure reduction was observed when recompressing a film that had already been compressed and expanded, if the recompression was started from an area value smaller than the one anticipated for the onset of the coexistence region. This observation suggests a "self-seeding" behavior, i.e., pre-existing nuclei allowed to circumvent the nucleation step. The decrease in Pi was accompanied by a transformation of the initially formed metastable mesoscopic clusters into a thermodynamically favored filamentary morphology. Our results demonstrate that it is practically impossible to obtain fully equilibrated coexisting phases in a Langmuir polymer film, neither under conditions of extremely slow continuous compression nor for long waiting times at a constant area in the coexistence region which allow for reorganization. Y1 - 2020 U6 - https://doi.org/10.1021/acs.langmuir.0c01268 SN - 0743-7463 VL - 36 IS - 28 SP - 8184 EP - 8192 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Belasri, Khadija A1 - Topal, Leila A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Kleinpeter, Erich A1 - Fulop, Ferenc A1 - Szatmari, Istvan T1 - Synthesis and conformational analysis of naphthoxazine-fused phenanthrene derivatives JF - Molecules N2 - The synthesis of new phenanthr[9,10-e][1,3]oxazines was achieved by the direct coupling of 9-phenanthrol with cyclic imines in the modified aza-Friedel-Crafts reaction followed by the ring closure of the resulting bifunctional aminophenanthrols with formaldehyde. Aminophenanthrol-type Mannich bases were synthesised and transformed to phenanthr[9,10-e][1,3]oxazines via [4 + 2] cycloaddition. Detailed NMR structural analyses of the new polyheterocycles as well as conformational studies including Density Functional Theory (DFT) modelling were performed. The relative stability of ortho-quinone methides (o-QMs) was calculated, the geometries obtained were compared with the experimentally determined NMR structures, and thereby, the regioselectivity of the reactions has been assigned. KW - modified Mannich reaction KW - cyclic imines KW - [4+2] cycloaddition KW - NMR KW - spectroscopy KW - conformational analysis KW - DFT calculations Y1 - 2020 U6 - https://doi.org/10.3390/molecules25112524 SN - 1420-3049 VL - 25 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Liu, Yue A1 - Gould, Oliver E. C. A1 - Rudolph, Tobias A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Polymeric microcuboids programmable for temperature-memory JF - Macromolecular materials and engineering N2 - Microobjects with programmable mechanical functionality are highly desirable for the creation of flexible electronics, sensors, and microfluidic systems, where fabrication/programming and quantification methods are required to fully control and implement dynamic physical behavior. Here, programmable microcuboids with defined geometries are prepared by a template-based method from crosslinked poly[ethylene-co-(vinyl acetate)] elastomers. These microobjects could be programmed to exhibit a temperature-memory effect or a shape-memory polymer actuation capability. Switching temperaturesT(sw)during shape recovery of 55 +/- 2, 68 +/- 2, 80 +/- 2, and 86 +/- 2 degrees C are achieved by tuning programming temperatures to 55, 70, 85, and 100 degrees C, respectively. Actuation is achieved with a reversible strain of 2.9 +/- 0.2% to 6.7 +/- 0.1%, whereby greater compression ratios and higher separation temperatures induce a more pronounced actuation. Micro-geometry change is quantified using optical microscopy and atomic force microscopy. The realization and quantification of microparticles, capable of a tunable temperature responsive shape-change or reversible actuation, represent a key development in the creation of soft microscale devices for drug delivery or microrobotics. KW - actuation KW - atomic force microscopy KW - biomaterials KW - microparticles KW - shape-memory polymers Y1 - 2020 U6 - https://doi.org/10.1002/mame.202000333 SN - 1438-7492 SN - 1439-2054 VL - 305 IS - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pacholski, Claudia A1 - Rosencrantz, Sophia A1 - Rosencrantz, Ruben R. A1 - Balderas-Valadez, Ruth Fabiola T1 - Plasmonic biosensors fabricated by galvanic displacement reactions for monitoring biomolecular interactions in real time JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Optical sensors are prepared by reduction of gold ions using freshly etched hydride-terminated porous silicon, and their ability to specifically detect binding between protein A/rabbit IgG and asialofetuin/Erythrina cristagalli lectin is studied. The fabrication process is simple, fast, and reproducible, and does not require complicated lab equipment. The resulting nanostructured gold layer on silicon shows an optical response in the visible range based on the excitation of localized surface plasmon resonance. Variations in the refractive index of the surrounding medium result in a color change of the sensor which can be observed by the naked eye. By monitoring the spectral position of the localized surface plasmon resonance using reflectance spectroscopy, a bulk sensitivity of 296 nm +/- 3 nm/RIU is determined. Furthermore, selectivity to target analytes is conferred to the sensor through functionalization of its surface with appropriate capture probes. For this purpose, biomolecules are deposited either by physical adsorption or by covalent coupling. Both strategies are successfully tested, i.e., the optical response of the sensor is dependent on the concentration of respective target analyte in the solution facilitating the determination of equilibrium dissociation constants for protein A/rabbit IgG as well as asialofetuin/Erythrina cristagalli lectin which are in accordance with reported values in literature. These results demonstrate the potential of the developed optical sensor for cost-efficient biosensor applications. KW - Optical sensor KW - Gold nanostructure KW - Localized surface plasmon resonance KW - Surface functionalization KW - Biomolecular interactions KW - Lectin Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02414-0 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 14 SP - 3433 EP - 3445 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Chemura, Sitshengisiwe A1 - Haubitz, Toni A1 - Primus, Philipp A. A1 - Underberg, Martin A1 - Hülser, Tim A1 - Kumke, Michael Uwe T1 - Europium-doped Ceria-Gadolinium mixed oxides BT - PARAFAC analysis and high-resolution emission spectroscopy under cryogenic conditions for structural analysis JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Gadolinium-doped ceria or gadolinium-stabilized ceria (GDC) is an important technical material due to its ability to conduct O2- ions, e.g., used in solid oxide fuel cells operated at intermediate temperature as an electrolyte, diffusion barrier, and electrode component. We have synthesized Ce1-xGdxO2-y:Eu3+ (0 <= x <= 0.4) nanoparticles (11-15 nm) using a scalable spray pyrolysis method, which allows the continuous large-scale technical production of such materials. Introducing Eu3+ ions in small amounts into ceria and GDC as spectroscopic probes can provide detailed information about the atomic structure and local environments and allows us to monitor small structural changes. This study presents a novel approach to structurally elucidate europium-doped Ce1-xGdxO2-y:Eu3+ nanoparticles by way of Eu3+ spectroscopy, processing the spectroscopic data with the multiway decomposition method parallel factor (PARAFAC) analysis. In order to perform the deconvolution of spectra, data sets of excitation wavelength, emission wavelength, and time are required. Room temperature, time-resolved emission spectra recorded at lambda(ex) = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals a high-symmetry species (which can also be probed directly via the CeO2 charge transfer band) and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded under cryogenic conditions after probing the D-5(0)-F-7(0) transition at lambda(ex) = 575-583 nm revealed additional variation in the low-symmetry Eu3+ sites in pure ceria and GDC. The total luminescence spectra of CeO2-y:Eu3+ showed Eu3+ ions located in at least three slightly different coordination environments with the same fundamental symmetry, whereas the overall hypsochromic shift and increased broadening of the D-5(0)-F-7(0) excitation in the GDC samples, as well as the broadened spectra after deconvolution point to less homogeneous environments. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is decreased with increasing Gd3+ and oxygen vacancy concentration. For reference, the Judd-Ofelt parameters of all spectra were calculated. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different contributions to any given spectrum. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c03188 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 24 SP - 4972 EP - 4983 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Saalfrank, Peter T1 - Surface hopping dynamics for azobenzene photoisomerization BT - effects of packing density on surfaces, fluorination, and excitation wavelength JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Azobenzenes easily photoswitch in solution, while their photoisomerization at surfaces is often hindered. In recent work, it was demonstrated by nonadiabatic molecular dynamics with trajectory surface hopping [Titov et al., J. Phys. Chem. Lett. 2016, 7, 3591-3596] that the experimentally observed suppression of trans -> cis isomerization yields in azobenzenes in a densely packed SAM (self-assembled monolayer) [Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831-1838] is dominated by steric hindrance. In the present work, we systematically study by ground-state Langevin and nonadiabatic surface hopping dynamics, the effects of decreasing packing density on (i) UV/vis absorption spectra, (ii) trans -> cis isomerization yields, and (iii) excited-state lifetimes of photoexcited azobenzene. Within the quantum mechanics/ molecular mechanics models adopted here, we find that above a packing density of similar to 3 molecules/nm(2), switching yields are strongly reduced, while at smaller packing densities, the "monomer limit" is quickly approached. The UV/vis absorption spectra, on the other hand, depend on packing density over a larger range (down to at least similar to 1 molecule/nm(2)). Trends for excited-state lifetimes are less obvious, but it is found that lifetimes of pi pi* excited states decay monotonically with decreasing coverage. Effects of fluorination of the switches are also discussed for single, free molecules. Fluorination leads to comparatively large trans -> cis yields, in combination with long pi pi* lifetimes. Furthermore, for selected systems, also the effects of n pi* excitation at longer excitation wavelengths have been studied, which is found to enhance trans -> cis yields for free molecules but can lead to an opposite behavior in densely packed SAMs. KW - Computational chemistry KW - Energy KW - Molecules KW - Monomers KW - Oligomers Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c08052 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 48 SP - 26287 EP - 26295 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hess, Andreas A1 - Schmidt, Bernhard Volkmar Konrad Jakob A1 - Schlaad, Helmut T1 - Aminolysis induced functionalization of (RAFT) polymer-dithioester with thiols and disulfides JF - Polymer Chemistry N2 - A series of polystyrene- and poly(methyl methacrylate)-dithioesters was subjected to aminolysis under ambient atmospheric conditions, i.e., in the presence of oxygen. Polymer disulfide coupling by oxidation occurred within tens of minutes and the yield of disulfide-coupled polymer increased with decreasing polymer molar mass. Oxidation of thiolates is usually an unwanted side reaction, here it is employed to obtain exclusively polymeric mixed disulfides through in situ aminolysis/functionalization in the presence of a thiol. The in situ aminolysis/functionalization in the presence of a disulfide, Ellman's reagent or polymer disulfide, resulted in the exclusive formation of polymer-dithionitrobenzoic acid, which can be further reacted with a thiol to exchange the terminal functionality, or block copolymer with dynamic disulfide linker, respectively. Y1 - 2020 U6 - https://doi.org/10.1039/d0py01365j SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 48 SP - 7677 EP - 7684 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kwesiga, George A1 - Kelling, Alexandra A1 - Kersting, Sebastian A1 - Sperlich, Eric A1 - von Nickisch-Rosenegk, Markus A1 - Schmidt, Bernd T1 - Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity BT - 5-deoxy-3′-prenylbiochanin A and erysubin F JF - Journal of natural products N2 - The prenylated isoflavones 5-deoxyprenylbiochanin A (7-hydroxy-4'-methoxy-3'-prenylisoflavone) and erysubin F (7,4'-dihydroxy-8,3'-diprenylisoflavone) were synthesized for the first time, starting from mono-or di-O-allylated chalcones, and the structure of 5-deoxy-3'-prenylbiochanin A was corroborated by single-crystal X-ray diffraction analysis. Flavanones are key intermediates in the synthesis. Their reaction with hypervalent iodine reagents affords isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via 2,3-dehydrogenation. This enabled a synthesis of 7,4'-dihydroxy-8,3'-diprenylflavone, a non-natural regioisomer of erysubin F. Erysubin F (8), 7,4'-dihydroxy-8,3'-diprenylflavone (27), and 5-deoxy-3'prenylbiochanin A (7) were tested against three bacterial strains and one fungal pathogen. All three compounds are inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 mu M. The diprenylated natural product erysubin F (8) and its flavone isomer 7,4'-dihydroxy-8,3'diprenylflavone (27) show in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 mu M, respectively. In contrast, the monoprenylated 5-deoxy-3'-prenylbiochanin A (7) is inactive against this MRSA strain. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jnatprod.0c00932 SN - 0163-3864 SN - 1520-6025 VL - 83 IS - 11 SP - 3445 EP - 3453 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Rottke, Falko O. A1 - Heyne, Marie-Victoria A1 - Reinicke, Stefan T1 - Switching enzyme activity by a temperature responsive inhibitor modified polymer JF - Chemical communications N2 - A thermoresponsive NIPAAm-based polymer is combined with the selective acetylcholinesterase inhibitor tacrine in order to create a strict in sense on/off switch for enzymatic activity. This polymer-inhibitor conjugate inhibits AChE at room temperature and enables reactivation of AChE by heating above the cloud point of the conjugate. Y1 - 2020 U6 - https://doi.org/10.1039/c9cc09385k SN - 1359-7345 SN - 1364-548X VL - 56 IS - 16 SP - 2459 EP - 2462 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bressel, Katharina A1 - Müller, Wenke A1 - Leser, Martin Erwin A1 - Reich, Oliver A1 - Hass, Roland A1 - Wooster, Tim J. T1 - Depletion-induced flocculation of concentrated emulsions probed by photon density wave spectroscopy JF - Langmuir N2 - Stable, creaming-free oil in water emulsions with high volume fractions of oil (phi = 0.05-0.40, density matched to water) and polysorbate 80 as an emulsifier were characterized without dilution by Photon Density Wave spectroscopy measuring light absorption and scattering behavior, the latter serving as the basis for droplet size distribution analysis. The emulsion with phi = 0.10 was used to investigate flocculation processes induced by xanthan as a semi-flexible linear nonabsorbing polymer. Different time regimes in the development of the reduced scattering coefficient mu(s)' could be identified. First, a rapid, temperature-dependent change in mu(s)' during the depletion process was observed. Second, the further decrease of mu(s)' follows a power law in analogy to a spinodal demixing behavior, as described by the Cahn-Hilliard theory. Y1 - 2020 U6 - https://doi.org/10.1021/acs.langmuir.9b03642 SN - 0743-7463 VL - 36 IS - 13 SP - 3504 EP - 3513 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Fischer, Eric W. A1 - Werther, Michael A1 - Bouakline, Foudhil A1 - Saalfrank, Peter T1 - A hierarchical effective mode approach to phonon-driven multilevel vibrational relaxation dynamics at surfaces JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - We discuss an efficient Hierarchical Effective Mode (HEM) representation of a high-dimensional harmonic oscillator bath, which describes phonon-driven vibrational relaxation of an adsorbate-surface system, namely, deuterium adsorbed on Si(100). Starting from the original Hamiltonian of the adsorbate-surface system, the HEM representation is constructed via iterative orthogonal transformations, which are efficiently implemented with Householder matrices. The detailed description of the HEM representation and its construction are given in the second quantization representation. The hierarchical nature of this representation allows access to the exact quantum dynamics of the adsorbate-surface system over finite time intervals, controllable via the truncation order of the hierarchy. To study the convergence properties of the effective mode representation, we solve the time-dependent Schrodinger equation of the truncated system-bath HEM Hamiltonian, with the help of the multilayer extension of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) method. The results of the HEM representation are compared with those obtained with a quantum-mechanical tier-model. The convergence of the HEM representation with respect to the truncation order of the hierarchy is discussed for different initial conditions of the adsorbate-surface system. The combination of the HEM representation with the ML-MCTDH method provides information on the time evolution of the system (adsorbate) and multiple effective modes of the bath (surface). This permits insight into mechanisms of vibration-phonon coupling of the adsorbate-surface system, as well as inter-mode couplings of the effective bath. Y1 - 2020 U6 - https://doi.org/10.1063/5.0017716 SN - 0021-9606 SN - 1089-7690 VL - 153 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kar, Manaswita A1 - Körzdörfer, Thomas T1 - Computational high throughput screening of inorganic cation based halide perovskites for perovskite only tandem solar cells JF - Materials Research Express N2 - We search for homovalent alternatives for A, B, and X-ions in ABX(3) type inorganic halide perovskites suitable for tandem solar cell applications. We replace the conventional A-site organic cation CH3NH3, by 3 inorganic cations, Cs, K, and Rb, and the B site consists of metals; Cd, Hg, Ge, Pb, and Sn This work is built on our previous high throughput screening of hybrid perovskite materials (Kar et al 2018 J. Chem. Phys. 149, 214701). By performing a systematic screening study using Density Functional Theory (DFT) methods, we found 11 suitable candidates; 2 Cs-based, 3 K-based and 6 Rb-based that are suitable for tandem solar cell applications. KW - inorganic perovskites KW - tandem solar cells KW - density functional theory Y1 - 2020 U6 - https://doi.org/10.1088/2053-1591/ab8c0d SN - 2053-1591 VL - 7 IS - 5 SP - 1 EP - 10 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wang, Xuepu A1 - Sperling, Marcel A1 - Reifarth, Martin A1 - Böker, Alexander T1 - Shaping metallic nanolattices BT - Design by microcontact printing from wrinkled stamps JF - Small N2 - A method for the fabrication of well-defined metallic nanostructures is presented here in a simple and straightforward fashion. As an alternative to lithographic techniques, this routine employs microcontact printing utilizing wrinkled stamps, which are prepared from polydimethylsiloxane (PDMS), and includes the formation of hydrophobic stripe patterns on a substrate via the transfer of oligomeric PDMS. Subsequent backfilling of the interspaces between these stripes with a hydroxyl-functional poly(2-vinyl pyridine) then provides the basic pattern for the deposition of citrate-stabilized gold nanoparticles promoted by electrostatic interaction. The resulting metallic nanostripes can be further customized by peeling off particles in a second microcontact printing step, which employs poly(ethylene imine) surface-decorated wrinkled stamps, to form nanolattices. Due to the independent adjustability of the period dimensions of the wrinkled stamps and stamp orientation with respect to the substrate, particle arrays on the (sub)micro-scale with various kinds of geometries are accessible in a straightforward fashion. This work provides an alternative, cost-effective, and scalable surface-patterning technique to fabricate nanolattice structures applicable to multiple types of functional nanoparticles. Being a top-down method, this process could be readily implemented into, e.g., the fabrication of optical and sensing devices on a large scale. KW - gold nanoparticle assembly KW - hydroxyl-functional poly(2-vinyl pyridine) KW - metallic nanolattices KW - microcontact printing KW - oligomeric KW - polydimethylsiloxane KW - polydimethylsiloxane wrinkles KW - wrinkled stamps Y1 - 2020 U6 - https://doi.org/10.1002/smll.201906721 SN - 1613-6810 SN - 1613-6829 VL - 16 IS - 11 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bastian, Philipp U. A1 - Yu, Leixiao A1 - de Guereñu Kurganova, Anna Lopez A1 - Haag, Rainer A1 - Kumke, Michael Uwe T1 - Bioinspired confinement of upconversion nanoparticles for improved performance in aqueous solution JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The resonance energy transfer (RET) from NaYF4:Yb,Er upconverting nanoparticles (UNCPs) to a dye (5-carboxytetramethylrhodamine (TAMRA)) was investigated by photoluminescence experiments and microscale thermophoresis (MST). The dye was excited via RET from the UCNPs which was excited in the near-infrared (NIR). The change of the dye diffusion speed (free vs coupled) was investigated by MST. RET shows significant changes in the decay times of the dye as well as of the UCNPs. MST reveals significant changes in the diffusion speed. A unique amphiphilic coating polymer (customized mussel protein (CMP) polymer) for UCNP surface coating was used, which mimics blood protein adsorption and mussel food protein adhesion to transfer the UCNP into the aqueous phase and to allow surface functionalization. The CMP provides very good water dispersibility to the UCNPs and minimizes ligand exchange and subsequent UCNP aging reactions because of the interlinkage of the CMP on the UCNP surface. Moreover, CMP provides N-3-functional groups for dick chemistry-based functionalization demonstrated with the dye 5-carboxytetramethylrhodamine (TAMRA). This establishes the principle coupling scheme for suitable biomarkers such as antibodies. The CMP provides very stable aqueous UCNP dispersions that are storable up to 3 years in a fridge at 5 degrees C without dissolution or coagulation. The outstanding properties of CMP in shielding the UCNP from unwanted solvent effects is reflected in the distinct increase of the photoluminescence decay times after UCNP functionalization. The UCNP-to-TAMRA energy transfer is also spectroscopically investigated at low temperatures (4-200 K), revealing that one of the two green Er(III) emission bands contributes the major part to the energy transfer. The TAMRA fluorescence decay time increases by a factor of 9500 from 2.28 ns up to 22 mu s due to radiationless energy transfer from the UCNP after NIR excitation of the latter. This underlines the unique properties of CMP as a versatile capping ligand for distinctly improving the UCNPs' performance in aqueous solutions, for coupling of biomolecules, and for applications for in vitro and in vivo experiments using UCNPs as optical probes in life science applications. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c09798 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 52 SP - 28623 EP - 28635 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Yeste, Maria Pilar A1 - Primus, Philipp-Alexander A1 - Alcantara, Rodrigo A1 - Cauqui, Miguel Angel A1 - Calvino, Juan Jose A1 - Pintado, José María A1 - Blanco, Ginesa T1 - Surface characterization of two Ce0.62Zr0.38O2 mixed oxides with different reducibility JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - This paper presents a study of the surface properties of two Ce/Zr mixed oxides with different reducibility, obtained by applying distinct thermal ageing treatments to an oxide with the composition Ce0.62Zr0.38O2. The surface composition was investigated by XPS. Chemical reactivity of the surface was studied by adsorption of the probe molecules CO2, D-2 and methanol. Nanostructural characterization was carried out by XRD, Raman and high-resolution Eu3+ spectroscopy (FLNS). The characterization showed only slight variations in surface composition and bulk Ce-Zr distribution, but hardy differences concerning the type and strength of acidic surface centres, as well as strong differences in the ability to dissociate hydrogen. Structural variations between both samples were identified by comparing the optical spectra of Eu3+ in surface doped samples. KW - Ce/Zr KW - Surface properties KW - Reactive adsorption KW - Hydrogen activation Y1 - 2020 U6 - https://doi.org/10.1016/j.apsusc.2019.144255 SN - 0169-4332 SN - 1873-5584 VL - 503 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chepkirui, Carolyne A1 - Ochieng, Purity J. A1 - Sarkar, Biswajyoti A1 - Hussain, Aabid A1 - Pal, Chiranjib A1 - Yang, Li Jun A1 - Coghi, Paolo A1 - Akala, Hoseah M. A1 - Derese, Solomon A1 - Ndakala, Albert A1 - Heydenreich, Matthias A1 - Wong, Vincent K. W. A1 - Erdelyi, Mate A1 - Yenesew, Abiy T1 - Antiplasmodial and antileishmanial flavonoids from Mundulea sericea JF - Fitoterapia N2 - Five known compounds (1-5) were isolated from the extract of Mundulea sericea leaves. Similar investigation of the roots of this plant afforded an additional three known compounds (6-8). The structures were elucidated using NMR spectroscopic and mass spectrometric analyses. The absolute configuration of 1 was established using ECD spectroscopy. In an antiplasmodial activity assay, compound 1 showed good activity with an IC50 of 2.0 mu M against chloroquine-resistant W2, and 6.6 mu M against the chloroquine-sensitive 3D7 strains of Plasmodium falciparum. Some of the compounds were also tested for antileishmanial activity. Dehydrolupinifolinol (2) and sericetin (5) were active against drug-sensitive Leishmania donovani (MHOM/IN/83/AG83) with IC50 values of 9.0 and 5.0 mu M, respectively. In a cytotoxicity assay, lupinifolin (3) showed significant activity on BEAS-2B (IC50 4.9 mu M) and HePG2 (IC50 10.8 mu M) human cell lines. All the other compounds showed low cytotoxicity (IC50 > 30 mu M) against human lung adenocarcinoma cells (A549), human liver cancer cells (HepG2), lung/bronchus cells (epithelial virus transformed) (BEAS-2B) and immortal human hepatocytes (LO2) KW - Mundulea sericea KW - leguminosae KW - flavanonol KW - flavonol KW - antiplasmodial KW - antileishmanial KW - cytotoxicity Y1 - 2020 U6 - https://doi.org/10.1016/j.fitote.2020.104796 SN - 0367-326X SN - 1873-6971 VL - 149 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Grothusheitkamp, Daniela A1 - Kunz, Thomas A1 - Methner, Frank-Jürgen T1 - Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry JF - Journal of mass spectrometr N2 - The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS. KW - APCI KW - fungus KW - gas chromatography KW - ion mobility spectrometry KW - mass KW - spectrometry KW - mold KW - soft X-ray Y1 - 2020 U6 - https://doi.org/10.1002/jms.4501 SN - 1076-5174 SN - 1096-9888 VL - 55 IS - 5 SP - 1 EP - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schneider, Matthias A1 - Fritzsche, Nora A1 - Puciul-Malinowska, Agnieszka A1 - Baliś, Andrzej A1 - Mostafa, Amr A1 - Bald, Ilko A1 - Zapotoczny, Szczepan A1 - Taubert, Andreas T1 - Surface etching of 3D printed poly(lactic acid) with NaOH BT - a systematic approach JF - Polymers N2 - The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds. KW - surface modification KW - sodium hydroxide etching KW - poly(lactic acid) KW - 3D KW - printing KW - roughness KW - wettability KW - erosion Y1 - 2020 U6 - https://doi.org/10.3390/polym12081711 SN - 2073-4360 VL - 12 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Perovic, Milena A1 - Qin, Qing A1 - Oschatz, Martin T1 - From molecular precursors to nanoparticles BT - tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization JF - Advanced functional materials N2 - Nanoporous carbon materials (NCMs) provide the "function" of high specific surface area and thus have large interface area for interactions with surrounding species, which is of particular importance in applications related to adsorption processes. The strength and mechanism of adsorption depend on the pore architecture of the NCMs. In addition, chemical functionalization can be used to induce changes of electron density and/or electron density distribution in the pore walls, thus further modifying the interactions between carbons and guest species. Typical approaches for functionalization of nanoporous materials with regular atomic construction like porous silica, metal-organic frameworks, or zeolites, cannot be applied to NCMs due to their less defined local atomic construction and abundant defects. Therefore, synthetic strategies that offer a higher degree of control over the process of functionalization are needed. Synthetic approaches for covalent functionalization of NCMs, that is, for the incorporation of heteroatoms into the carbon backbone, are critically reviewed with a special focus on strategies following the concept "from molecules to materials." Approaches for coordinative functionalization with metallic species, and the functionalization by nanocomposite formation between pristine carbon materials and heteroatom-containing carbons, are introduced as well. Particular focus is given to the influences of these functionalizations in adsorption-related applications. KW - composites KW - heteroatoms KW - metal species KW - porous carbon materials KW - surface KW - functionalization Y1 - 2020 U6 - https://doi.org/10.1002/adfm.201908371 SN - 1616-301X SN - 1616-3028 VL - 30 IS - 41 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Prüfert, Chris A1 - Urban, Raphael David A1 - Fischer, Tillmann Georg A1 - Villatoro, José Andrés A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Belder, Detlev A1 - Zeitler, Kirsten A1 - Löhmannsröben, Hans-Gerd T1 - In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - The visible-light photocatalyticE/Zisomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzedE/Zisomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of theZ-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for theE/Zisomerization of ethyl cinnamate derivativeE-1. Conversion rates of up to 80% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan. KW - microchip KW - reaction monitoring KW - IR-MALDI KW - ion mobility spectrometry KW - photochemistry KW - photocatalysis KW - Olefin isomerization Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02923-y SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 28 SP - 7899 EP - 7911 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Qin, Qing A1 - Oschatz, Martin T1 - Overcoming chemical inertness under ambient conditions BT - a critical view on recent developments in Ammonia synthesis via electrochemical N-2 reduction by asking five questions JF - ChemElectroChem N2 - Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist. KW - N-2 reduction KW - ammonia synthesis KW - catalysis KW - catalysts KW - electrolytes Y1 - 2022 U6 - https://doi.org/10.1002/celc.201901970 SN - 2196-0216 VL - 7 IS - 4 SP - 878 EP - 889 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hossain, Mohammad Delwar A1 - Chakraborty, Chanchal A1 - Rana, Utpal A1 - Mondal, Sanjoy A1 - Holdt, Hans-Jürgen A1 - Higuchi, Masayoshi T1 - Green-to-black electrochromic copper(I)-based metallo-supramolecular polymer with a perpendicularly twisted structure JF - ACS applied polymer materials N2 - A Cu(I)-based metallo-supramolecular polymer with a perpendicularly twisted structure was synthesized by a 1:1 complexation of tetrakis(acetonitrile)copper(I) triflate with the pi-conjugated dibenzoeilatin ligand. Stepwise complexation behavior of Cu(I) with the ligand was revealed by titrimetric ultraviolet- visible (UV-vis) spectroscopic analysis. Formation of a high-molecular-weight polymer (M-w = 1.21 x 10(5) Da) was confirmed by a size-exclusion chromatography-viscometry-right-angle laser light scattering study. A bundle structure of the polymer chains was observed by scanning electron microscopy. A cyclic voltammogram of the polymer film showed reversible redox waves at a negative potential. A device consisting of indium tin oxide (ITO) glass coated with a film of the polymer exhibited reversible green-to-black electrochromism upon alternate application of -3 and +1 V. KW - electrochromism KW - metallo-supramolecular polymers KW - stepwise complexation KW - metal-to-ligand charge transfer KW - copper KW - dibenzoeilatin Y1 - 2020 U6 - https://doi.org/10.1021/acsapm.0c00559 SN - 2637-6105 VL - 2 IS - 11 SP - 4449 EP - 4454 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Huwer, Johannes A1 - Banerji, Amitabh T1 - Corona sei Dank?! BT - Digitalisierung im Chemieunterricht JF - Chemie konkret : CHEMKON ; Forum für Unterricht und Didaktik Y1 - 2020 U6 - https://doi.org/10.1002/ckon.202000037 SN - 0944-5846 SN - 1521-3730 VL - 27 IS - 3 SP - 105 EP - 106 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine T1 - Highly K+ selective probes with fluorescence emission wavelengths higher than 500 nm in water JF - ChemistrySelect N2 - Herein, we report on the synthesis of highly K+/Na+ selective fluorescent probes in a feasible number of synthetic steps. These K+ selective fluorescent probes, so called fluoroionophores, 1 and 2 consists of different highly K+/Na+ selective building blocks the alkoxy-substituted N-phenylaza-18-crown-6 lariat ethers (ionophores) and "green" (cf. coumarin unit in 1) or "red" (cf. nile red unit in 2) fluorescent moieties (fluorophores). The fluorescent probes 1 and 2 show K+ induced fluorescence enhancement factors of 4.1 for 1 and 1.9 for 2 and dissociation constants for the corresponding K+ complexes of 43 mM (1+K+) and 18 mM (2+K+) in buffered aqueous solution. The fluorescence signal of 1 and 2 is changed by less than 5 % by pH values in the range of 6.8 to 8.8. Thus, 1 and 2 are capable fluorescent tools to determine extracellular K+ levels by fluorescence enhancements at wavelengths higher than 500 nm. KW - potassium KW - sodium KW - fluorescence KW - selectivity KW - probes Y1 - 2020 U6 - https://doi.org/10.1002/slct.202003785 SN - 2365-6549 VL - 5 IS - 42 SP - 13174 EP - 13178 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Marques, Telma S. A1 - Smialek, Malgorzata A. A1 - Schürmann, Robin A1 - Bald, Ilko A1 - Raposo, Maria A1 - Eden, Sam A1 - Mason, Nigel J. T1 - Decomposition of halogenated nucleobases by surface plasmon resonance excitation of gold nanoparticles JF - The European physical journal : D, Atomic, molecular, optical and plasma physics N2 - Halogenated uracil derivatives are of great interest in modern cancer therapy, either as chemotherapeutics or radiosensitisers depending on their halogen atom. This work applies UV-Vis spectroscopy to study the radiation damage of uracil, 5-bromouracil and 5-fluorouracil dissolved in water in the presence of gold nanoparticles upon irradiation with an Nd:YAG ns-pulsed laser operating at 532 nm at different fluences. Gold nanoparticles absorb light efficiently by their surface plasmon resonance and can significantly damage DNA in their vicinity by an increase of temperature and the generation of reactive secondary species, notably radical fragments and low energy electrons. A recent study using the same experimental approach characterized the efficient laser-induced decomposition of the pyrimidine ring structure of 5-bromouracil mediated by the surface plasmon resonance of gold nanoparticles. The present results show that the presence of irradiated gold nanoparticles decomposes the ring structure of uracil and its halogenated derivatives with similar efficiency. In addition to the fragmentation of the pyrimidine ring, for 5-bromouracil the cleavage of the carbon-halogen bond could be observed, whereas for 5-fluorouracil this reaction channel was inhibited. Locally-released halogen atoms can react with molecular groups within DNA, hence this result indicates a specific mechanism by which doping with 5-bromouracil can enhance DNA damage in the proximity of laser irradiated gold nanoparticles. Y1 - 2020 U6 - https://doi.org/10.1140/epjd/e2020-10208-3 SN - 1434-6060 SN - 1434-6079 VL - 74 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Fudickar, Werner A1 - Linker, Torsten T1 - Structural motives controlling the binding affinity of 9,10-bis(methylpyridinium)anthracenes towards DNA JF - Bioorganic & medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines N2 - In the search of new DNA groove binding agents a series of substituted 9,10-methylpyridiniumanthracenes have been synthesized and their interactions with DNA have been studied by UV/vis absorption, CD and fluorescence spectroscopy. A minor groove binding mode is confirmed by DNA melting studies, strong CD effects, the dependence of the binding affinity on ionic strength, and the differentiation between AT and GC base pairs. No binding occurs to GC sequences. Binding constants to calf thymus DNA (ct-DNA) and poly(dA:dT) in the range between 1 x 10(4) and 3 x 10(5) M-1 have been determined. The binding strength decreases with the size of substituents attached at the anthracene site. Variation of the substitution pattern of the charged groups shows that methyl groups in meta position cause slightly stronger binding than methyl groups in para position. In contrast, with these groups in ortho position, no binding interaction has been observed. The strongest binding is achieved with an expansion of the peripheral heterocycle from pyridine to quinoline. Molecular modeling reveals the pivotal role of the substitution pattern: Anthracenes with para and meta pyridines align along the minor grooves. On the other hand, the ortho derivative adopts no groove-alignment. KW - groove binding KW - anthracenes KW - ct-DNA KW - fluorescence enhancement KW - docking Y1 - 2020 U6 - https://doi.org/10.1016/j.bmc.2020.115432 SN - 0968-0896 SN - 1464-3391 VL - 28 IS - 8 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Matic, Aleksandar A1 - Hess, Andreas A1 - Schanzenbach, Dirk A1 - Schlaad, Helmut T1 - Epoxidized 1,4-polymyrcene JF - Polymer chemistry N2 - 1,4-Polymyrcene was synthesized by anionic polymerization and epoxidized using meta-chloroperbenzoic acid. Samples with different degrees of epoxidation (25%, 49%, 74%, and 98%) were prepared and examined according to their chemical and thermal properties. Epoxidation was found to increase the glass transition temperature (T-g = 14 degrees C for the 98% epoxidized 1,4-polymyrcene) as well as the shelf live (>10 months). The trisubstituted epoxide groups were remarkably stable against nucleophiles under basic conditions but cross-linked or hydrolyzed in the presence of an acid. Also, highly epoxidized 1,4-polymyrcene readily cross-linked upon annealing at 260 degrees C to produce an epoxy resin. KW - comb poly(beta-myrcene)-graft-poly(l-lactide) copolymers KW - thermoplastic elastomer synthesis KW - myrcen KW - polymerization KW - epoxidation Y1 - 2020 U6 - https://doi.org/10.1039/c9py01783f SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 7 SP - 1364 EP - 1368 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Balischewski, Christian A1 - Behrens, Karsten A1 - Zehbe, Kerstin A1 - Günter, Christina A1 - Mies, Stefan A1 - Sperlich, Eric A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Ionic liquids with more than one metal BT - optical and rlectrochemical properties versus d-block metal vombinations JF - Chemistry - a European journal N2 - Thirteen N-butylpyridinium salts, including three monometallic [C4Py](2)[MCl4], nine bimetallic [C4Py](2)[(M1-xMxCl4)-M-a-Cl-b] and one trimetallic compound [C4Py](2)[(M1-y-zMyMz (c) Cl4)-M-a-M-b] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 degrees C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10(-4) and 10(-8) S cm(-1). Some Cu-based ILs reach conductivities of 10(-2) S cm(-1), which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47x10(-1) S cm(-1) at 70 degrees C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V. KW - bandgap KW - electrochemistry KW - ionic liquids KW - metal-containing ionic KW - liquids KW - tetrahalido metallates Y1 - 2020 U6 - https://doi.org/10.1002/chem.202003097 SN - 0947-6539 SN - 1521-3765 VL - 26 IS - 72 SP - 17504 EP - 17513 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable JF - Macromolecular rapid communications N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - https://doi.org/10.1002/marc.202000485 SN - 1022-1336 SN - 1521-3927 VL - 42 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Youk, Sol A1 - Hofmann, Jan P. A1 - Badamdorj, Bolortuya A1 - Volkel, Antje A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Controlling pore size and pore functionality in sp(2)-conjugated microporous materials by precursor chemistry and salt templating JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - The synthesis of sp(2)-conjugated, heteroatom-rich, "carbonaceous" materials from economically feasible raw materials and salt templates is reported. Low cost citrazinic acid (2,6-dihydroxy-4-pyridinecarboxylic acid) and melamine are used as components to form a microporous, amorphous framework, where edges of the covalent frameworks are tightly terminated with nitrogen and oxygen moieties. ZnCl2 as the porogen stabilizes structural microporosity as well as nitrogen and oxygen heteroatoms up to comparably high condensation temperatures of 750 and 950 degrees C. The specific surface area up to 1265 m(2) g(-1) is mainly caused by micropores and typical of heteroatom-rich carbon materials with such structural porosity. The unusually high heteroatom content reveals that the edges and pores of the covalent structures are tightly lined with heteroatoms, while C-C or C-H bonds are expected to have a minor contribution as compared to typical carbon materials without or with minor content of heteroatoms. Adsorption of water vapor and carbon dioxide are exemplarily chosen to illustrate the impact of this heteroatom functionalization under salt-templating conditions on the adsorption properties of the materials. 27.10 mmol g(-1) of H2O uptake (at p/p(0) = 0.9) can be achieved, which also proves the very hydrophilic character of the pore walls, while the maximum CO2 uptake (at 273 K) is 5.3 mmol g(-1). At the same time the CO2/N-2 adsorption selectivity at 273 K can reach values of up to 60. All these values are beyond those of ordinary high surface area carbons, also differ from those of N-doped carbons, and are much closer to those of organized framework species, such as C2N. Y1 - 2020 U6 - https://doi.org/10.1039/d0ta05856d SN - 2050-7488 SN - 2050-7496 VL - 8 IS - 41 SP - 21680 EP - 21689 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Hermanns, Jolanda A1 - Schmidt, Bernd A1 - Glowinski, Ingrid A1 - Keller, David T1 - Online teaching in the course "organic chemistry" for nonmajor chemistry students BT - from necessity to opportunity JF - Journal of chemical education N2 - In this communication the development of an online course on the topic organic chemistry for nonmajor chemistry students is described and discussed. For this online course, the existing classroom course was further developed. New elements such as podcasts, task navigators, and a forum for discussing the solving of tasks or problems with the content were added. This new online course was evaluated. Therefore, a questionnaire was developed. This consists of questions with regard to the longtime learning behavior of the students and to the online learning. The results of this evaluation show that a preference for online learning and a preference for classroom teaching can be measured separately in two scales. Students values on the scale representing a preference for online learning correlate positively and significantly with confidence in the choice of the study subject, enthusiasm about the subject, and the ability to organize their learning, learning environment, and time management. They correlate also with the satisfaction concerning the materials provided. Students values for one of those teaching methods also correlate with their rating with regard to their exam preparation. Values representing a preference for online teaching correlate positively with students better feeling of exam preparation. Values representing a preference for classroom teaching show negative correlations with the values representing students similar or even better preparation for the exams as a result of online teaching. It is therefore not surprising that the ratings for the two scales correlate with the wish for a combination of online teaching and classroom teaching in the future. As a solution, a new course concept for the time after the corona virus crisis that suits all students is outlined in the outlook. KW - first-year undergraduate/general KW - organic chenlistry KW - computer-based KW - learning KW - distance learning/self instruction Y1 - 2020 U6 - https://doi.org/10.1021/acs.jchemed.0c00658 SN - 0021-9584 SN - 1938-1328 VL - 97 IS - 9 SP - 3140 EP - 3146 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Bent Allenes or Di-1,3-betaines-An Answer Given on the Magnetic Criterion JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of bent allene 1, the corresponding C-extended 1,3-butadiene derivative 2, and a number of related compounds 3 -20 have been calculated using the gauge-independent atomic orbital perturbation method, employing the nucleus-independent chemical shift concept and visualized as isochemical shielding surfaces of various sizes and directions. Prior to that, both structures and C-13 chemical shifts were calculated and compared with available experimental bond lengths and delta(C-13)/ppm values (also, as a quality criterion for the computed structures). Bond lengths, the delta(C-13)/ppm, and the TSNMRS values are employed to qualify and quantify the electronic structure of the studied compounds in terms of dative or classical electron-sharing bonds. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c01392 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 16 SP - 3180 EP - 3190 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Haubitz, Toni A1 - John, Leonard A1 - Freyse, Daniel A1 - Wessig, Pablo A1 - Kumke, Michael Uwe T1 - Investigating the Sulfur "Twist" on the Photophysics of DBD Dyes JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - The so-called DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes are a new class of fluorescent dyes, with tunable photophysical properties like absorption, fluorescence lifetime, and Stokes shift. With the development of sulfur based DBDs, this dye class is extended even further for possible applications in spectroscopy and microscopy. In this paper we are investigating the basic photophysical properties and their implications for future applications for S-4-DBD as well as O-4-DBD. On the basis of time-resolved laser fluorescence spectroscopy, transient absorption spectroscopy, and UV/vis-spectroscopy, we determined the rate constants of the radiative and nonradiative deactivation processes as well as the energy of respective electronic states involved in the electronic deactivation of S-4-DBD and of O-4-DBD. For S-4-DBD we unraveled the triplet formation with intersystem crossing quantum yields of up to 80%. By TD-DFT calculations we estimated a triplet energy of around 13500-14700 cm(-1) depending on the DBD dye and solvent. Through solvent dependent measurements, we found quadrupole moments in the range of 2 B. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c01880 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 22 SP - 4345 EP - 4353 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ilic, Ivan K. A1 - Tsouka, Alexandra A1 - Perovic, Milena A1 - Hwang, Jinyeon A1 - Heil, Tobias A1 - Löffler, Felix A1 - Oschatz, Martin A1 - Antonietti, Markus A1 - Liedel, Clemens T1 - Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage JF - Advanced sustainable systems N2 - The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups. KW - biomass KW - electrochemistry KW - energy storage KW - redox chemistry KW - sustainability KW - tannic acid Y1 - 2020 U6 - https://doi.org/10.1002/adsu.202000206 SN - 2366-7486 VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Perovic, Milena A1 - Zeininger, Lukas A1 - Oschatz, Martin T1 - Immobilization of gold-on-carbon catalysts onto perfluorocarbon emulsion droplets to promote oxygen delivery in aqueous phase (D)-glucose oxidation JF - ChemCatChem N2 - The catalytic activity of metal nanoparticles (NPs) supported on porous supports can be controlled by various factors, such as NPs size, shape, or dispersivity, as well as their interaction with the support or the properties of the support material itself. However, these intrinsic properties are not solely responsible for the catalytic behavior of the overall reaction system, as the local environment and surface coverage of the catalyst with reactants, products, intermediates and other invloved species often play a crucial role in catalytic processes as well. Their contribution can be particularly critical in liquid-phase reactions with gaseous reactants that often suffer from low solubiltiy. One example is (D)-glucose oxidation with molecular oxygen over gold nanoparticles supported on porous carbons. The possibility to promote oxygen delivery in such aqueous phase oxidation reactions via the immobilization of heterogenous catalysts onto the interface of perfluorocarbon emulsion droplets is reported here. Gold-on-carbon catalyst particles can stabilize perfluorocarbon droplets in the aqueous phase and the local concentration of the oxidant in the surroundings of the gold nanoparticles accelerates the rate-limiting step of the reaction. Consequently, the reaction rate of a system with the optimal volume fraction of fluorocarbon is higher than a reference emulsion system without fluorocarbon, and the effect is observed even without additional oxygen supply. KW - perfluorocarbon emulsion KW - glucose oxidation KW - porous carbon KW - gas KW - solubility KW - pickering emulsion KW - liquid-phase catalysis Y1 - 2020 U6 - https://doi.org/10.1002/cctc.202001590 SN - 1867-3880 SN - 1867-3899 VL - 13 IS - 1 SP - 196 EP - 201 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Sprenger, Tobias A1 - Riemer, Janine T1 - 1,2,3-Triazol-1,4-diyl-Fluoroionophores for Zn2+, Mg2+ and Ca2+ based on Fluorescence Intensity Enhancements in Water JF - ChemistrySelect N2 - Herein, we represent cation-responsive fluorescent probes for the divalent cations Zn2+, Mg2+ and Ca2+, which show cation-induced fluorescence enhancements (FE) in water. The Zn2+-responsive probes Zn1, Zn2, Zn3 and Zn4 are based on o-aminoanisole-N,N-diacetic acid (AADA) derivatives and show in the presence of Zn2+ FE factors of 11.4, 13.9, 6.1 and 8.2, respectively. Most of all, Zn1 and Zn2 show higher Zn2+ induced FE than the regioisomeric triazole linked fluorescent probes Zn3 and Zn4, respectively. In this set, ZN2 is the most suitable probe to detect extracellular Zn2+ levels. For the Mg2+-responsive fluorescent probes Mg1, Mg2 and Mg3 based on o-aminophenol-N,N,O-triacetic acid (APTRA) derivatives, we also found that the regioisomeric linkage influences the fluorescence responds towards Mg2+ (Mg1+100 mM Mg2+ (FEF=13.2) and Mg3+100 mM Mg2+ (FEF=2.1)). Mg2 shows the highest Mg2+-induced FE by a factor of 25.7 and an appropriate K-d value of 3 mM to measure intracellular Mg2+ levels. Further, the Ca2+-responsive fluorescent probes Ca1 and Ca2 equipped with a 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) derivative show high Ca2+-induced FEs (Ca1 (FEF=22.1) and Ca2 (FEF=23.0)). Herein, only Ca1 (K-d=313 nM) is a suitable Ca2+ fluorescent indicator to determine intracellular Ca2+ levels. KW - calcium KW - fluorescence KW - magnesium KW - probes KW - zinc Y1 - 2020 U6 - https://doi.org/10.1002/slct.202003695 SN - 2365-6549 VL - 5 IS - 41 SP - 12727 EP - 12735 PB - Wiley-VCH CY - Weinheim ER -