TY - THES A1 - Latza, Victoria Maria T1 - Interactions involving lipid-based surfaces T1 - Wechselwirkungen lipid-basierter Oberflächen BT - from protein adsorption to membrane adhesion BT - Protein-Adsorption und Membran-Adhäsion N2 - Interactions involving biological interfaces such as lipid-based membranes are of paramount importance for all life processes. The same also applies to artificial interfaces to which biological matter is exposed, for example the surfaces of drug delivery systems or implants. This thesis deals with the two main types of interface interactions, namely (i) interactions between a single interface and the molecular components of the surrounding aqueous medium and (ii) interactions between two interfaces. Each type is investigated with regard to an important scientific problem in the fields of biotechnology and biology: 1.) The adsorption of proteins to surfaces functionalized with hydrophilic polymer brushes; a process of great biomedical relevance in context with harmful foreign-body-response to implants and drug delivery systems. 2.) The influence of glycolipids on the interaction between lipid membranes; a hitherto largely unexplored phenomenon with potentially great biological relevance. Both problems are addressed with the help of (quasi-)planar, lipid-based model surfaces in combination with x-ray and neutron scattering techniques which yield detailed structural insights into the interaction processes. Regarding the adsorption of proteins to brush-functionalized surfaces, the first scenario considered is the exposure of the surfaces to human blood serum containing a multitude of protein species. Significant blood protein adsorption was observed despite the functionalization, which is commonly believed to act as a protein repellent. The adsorption consists of two distinct modes, namely strong adsorption to the brush grafting surface and weak adsorption to the brush itself. The second aspect investigated was the fate of the brush-functionalized surfaces when exposed to aqueous media containing immune proteins (antibodies) against the brush polymer, an emerging problem in current biomedical applications. To this end, it was found that antibody binding cannot be prevented by variation of the brush grafting density or the polymer length. This result motivates the search for alternative, strictly non-antigenic brush chemistries. With respect to the influence of glycolipids on the interaction between lipid membranes, this thesis focused on the glycolipids’ ability to crosslink and thereby to tightly attract adjacent membranes. This adherence is due to preferential saccharide-saccharide interactions occurring among the glycolipid headgroups. This phenomenon had previously been described for lipids with special oligo-saccharide motifs. Here, it was investigated how common this phenomenon is among glycolipids with a variety of more abundant saccharide-headgroups. It was found that glycolipid-induced membrane crosslinking is equally observed for some of these abundant glycolipid types, strongly suggesting that this under-explored phenomenon is potentially of great biological relevance. N2 - Wechselwirkungen, die von biologischen Grenzflächen wie Lipidmembranen eingegangen werden, haben tiefgreifende Auswirkungen auf alle Lebensprozesse. Dasselbe trifft auf alle künstlichen Grenzflächen zu, die in Kontakt mit biologischer Materie treten. Die Oberflächen von Wirkstoffverabreichungssystemen oder Implantaten sind hierfür prominente Beispiele. Diese Dissertationsschrift behandelt zwei Hauptkategorien von Grenzflächen-Wechselwirkungen: Zum einen die Wechselwirkung zwischen einzelnen Grenzflächen und den molekularen Komponenten des wässrigen Umfelds; zum anderen die Wechselwirkung zwischen zwei Grenzflächen. Jede dieser beiden Wechselwirkungskategorien wurde unter Bezugnahme auf eine wichtige wissenschaftliche Fragestellung aus den Bereichen der Biologie und Biotechnologie untersucht: 1.) Die Adsorption von Proteinen an Oberflächen die mit hydrophilen Polymerbürsten funktionalisiert sind; diese Anlagerung von biologischem Material stellt einen Prozess von äußerster biomedizinischer Relevanz dar, der beispielsweise beim Auftreten der schädlichen Fremdkörperabstoßung von Implantaten oder Wirkstoffverabreichungssystemen eine entscheidende Rolle spielt. 2.) Der Einfluss von Glykolipiden auf Wechselwirkungen zwischen Lipidmembranen, einem bislang größtenteils unerforschten Phänomen von potentiell herausragender biologischer Bedeutung. Die Bearbeitung beider Fragestellungen erfolgte unter Verwendung (quasi-)planarer, lipid-basierter Modellsysteme in Kombination mit Röntgen- oder Neutronenstreuung, welche detaillierte strukturelle Einblicke von Wechselwirkungsprozessen liefern. In Bezug auf die Adsorption von Proteinen an polymer-funktionalisierte Oberflächen wurde zunächst ein Szenario behandelt, bei dem die Oberflächen menschlichem Blutserum ausgesetzt sind, welches eine Vielzahl verschiedener Proteinspezies enthält. Die verwendete Funktionalisierung gilt gemeinhin als proteinabstoßend. Anders als erwartet zeigte sich dennoch signifikante Adsorption von Blutproteinen auf der Oberfläche. Die gemessene Adsorption weist zwei unterschiedliche Arten auf: Starke Adsorption an die Oberfläche, an die die Polymere kovalent gebunden sind, und schwache Adsorption an die Polymerbürste selbst. Der zweite Aspekt, der beleuchtet wurde, sind die Folgen von Antikörpern gegen die Bürstenpolymere. Deren zunehmendes Vorkommen stellt ein Problem für biomedizinische Anwendungen dar. Die Ergebnisse der Arbeit zeigen, dass die starke Adsorption von Antikörpern nicht durch die Veränderung von Bürstenparametern, wie Anbindungsdichte oder Polymerisationsgrad, aufgehalten werden kann. Diese Erkenntnis motiviert die Suche nach alternativen, nicht-antigenen Bürstenmaterialien. In der zweiten Wechselwirkungskategorie, dem Einfluss von Glykolipiden auf Wechselwirkungen zwischen Lipidmembranen, wurde die Fähigkeit der Glykolipide zur Membran-Adhäsion und der damit einhergehenden starken Anziehung von aneinander liegenden Membranen beleuchtet. Die Kohäsion erfolgt dabei über anziehende Saccharid-Saccharid-Wechselwirkungen der Kopfgruppen. Dieses Verhalten wurde schon für Lipide mit speziellen Oligosaccharid-Motiven beschrieben. Daher wurde bei der Untersuchung der Adhäsionsfähigkeit besonders die Verbreitung des Phänomens unter Glykolipiden mit häufig vorkommenden Saccharid-Kopfgruppen fokussiert. Es zeigte sich, dass die von Glykolipiden hervorgerufene Adhäsion auch für einige dieser häufig vorkommenden Glykolipidtypen beobachtet werden kann. Dies deutet darauf hin, dass dieses Phänomen von weitreichender Bedeutung für die Biologie ist und daher weiterhin intensiv erforscht werden sollte. KW - surfaces and interfaces KW - biocompatibility KW - PEG brushes KW - lipids KW - neutron reflectometry KW - biological membranes KW - glycolipids KW - SAXS KW - WAXS KW - neutron diffraction KW - off-specular scattering KW - Oberfächen KW - Grenzflächen KW - Biokompatibilität KW - PEG-Funktionalisierung KW - Lipide KW - Neutronen Reflektometrie KW - biologische Membranen KW - Glykolipide KW - SAXS KW - WAXS KW - Neutronen Diffraktion Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445593 ER - TY - THES A1 - Sapei, Lanny T1 - Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics T1 - Charakterisierung von Siliciumdioxid in Winterschachtelhalmen und dessen Umwandlung in biomorphe Keramiken N2 - Equisetum spp. (horsetail / “Schachtelhalm”) is the only surviving genus of the primitive Sphenopsids vascular plants which reached their zenith during the Carboniferous era. It is an herbaceous plant and is distinguished by jointed stems with fused whorl of nodal leaves. The plant has been used for scouring kitchen utensils and polishing wood during the past time due to its high silica encrustations in the epidermis. Equisetum hyemale (scouring rush) can accumulate silica up to 16% dry weight in its tissue, which makes this plant an interesting candidate as a renewable resource of silica for the synthesis of biomorphous ceramics. The thesis comprises a comprehensive experimental study of silica accumulations in E.hyemale using different characterisation techniques at all hierarchical levels. The obtained results shed light on the local distribution, chemical form, crystallinity, and nanostructure of biogenic silica in E.hyemale which were quite unclear until now. Furthermore, isolation of biogenic silica from E.hyemale to obtain high grade mesoporous silica with high purity is investigated. Finally, syntheses of silicon carbide (b-SiC) by a direct thermoconversion process of E.hyemale is attempted, which is a promising material for high performance ceramics. It is found that silica is deposited continuously on the entire epidermal layer with the highest concentration on the knobs. The highest silicon content is at the knob tips (≈ 33%), followed by epidermal flank (≈ 17%), and inner lower knob (≈ 6%), whereas there is almost no silicon found in the interior parts. Raman spectroscopy reveals the presence of at least two silica modifications in E.hyemale. The first type is pure hydrated amorphous silica restricted to the knob tips. The second type is accumulated on the entire continuous outer layer adjacent to the epidermis cell walls. It is lacking silanol groups and is intimately associated with polysaccharides (cellulose, hemicellulose, pectin) and inorganic compounds. Silica deposited in E.hyemale is found to be mostly amorphous with almost negligible amounts of crystalline silica in the form of a-quartz (< 7%). The silica primary particles have a plate-like shape with a thickness of about 2 nm. Pure mesoporous amorphous silica with an open surface area up to 400 m2/g can be obtained from E.hyemale after leaching the plant with HCl to remove the inorganic impurities followed by a calcination treatment. The optimum calcination temperature appears to be around 500°C. Calcination of untreated E.hyemale causes a collapse of the biogenic silica structure which is mainly attributed to the detrimental action of alkali ions present in the native plant. Finally, pure b-SiC with a surface area of about 12 m2/g is obtained upon direct pyrolysis of HCl-treated E.hyemale samples in argon atmosphere. The original structure of native E.hyemale is substantially retained in the biomorphous b-SiC. The results of this thesis lead to a better understanding of the silicification process and allow to draw conclusions about the role of silica in E.hyemale. In particular, a templating role of the plant biopolymers for the synthesis of the nanostructured silica within the plant body can be deduced. Moreover, the high grade ultrafine amorphous silica isolated from E.hyemale promises applications as adsorbent and catalyst support and as silica source for the fabrication of silica-based composites. The synthesis of biomorphous b-SiC from sustainable and low-cost E.hyemale is still in its initial stage. The present thesis demonstrates the principal possibility of carbothermal synthesis of SiC from E.hyemale with the prospect of potential applications, for instance as refractory materials, catalyst supports, or high performance advanced ceramics. N2 - Equisetum spp. (Schachtelhalm) ist die einzige überlebende Gattung der Schachtelhalmgewächse, die ihren Zenit während der Karbon Ära erreichten. Der Schachtelhalm ist eine krautartige Pflanze und wird durch verbundene Stämme mit fixiertem Wirtel der Knotenblätter unterschieden. Aufgrund seiner hohen Siliciumdioxid Bedeckung in der Epidermis sind Winterschachtelhalmen lange Zeit zur Reinigung von Küchegeräten und zum Polieren von Holz verwendet worden. Der Winterschachtelhalm (auch Scheuerkraut genannt) kann Siliciumdioxid bis zu 16% Trockengewicht in seinem Gewebe ansammeln. Dies macht aus dieser Pflanze einen interessanten Kandidaten als erneubare Ressource von Siliciumdioxid für die Synthese von biomorphen Keramiken. Die vorliegende Doktorarbeit beinhaltet eine ausführliche experimentelle Studie der Siliciumdioxidansammlungen in Winterschachtelhalmen mittels unterschiedlicher Charakterisierungstechniken auf allen hierarchischen Ebenen. Die Ergebnisse der Arbeit werfen neues Licht auf die lokale Verteilung, die chemischen Form, die Kristallinität und die Nanostruktur des biogenen Siliciumdioxids, die bisher ziemlich unklar waren. Außerdem werden Möglichkeiten zur Isolierung des biogenen Siliciumdioxids aus Winterschachtelhalmen untersucht, um hochgradig reines Siliciumdioxid zu erhalten. Auch wird die direkte carbothermale Synthese von Siliciumkarbid (b-SiC) aus Schachtelhalmen untersucht, mit dem Ziel einer kostengünstigen Herstellung von Hochleistungskeramiken aus nachwachsenden Rohstoffen Es wird gezeigt, dass das Siliciumdioxid in einer kontinuierlichen Schicht in der Epidermis vorliegt, mit der höchsten Siliciumkonzentration in den auffälligen knopfartigen Ausbuchtungen. Den höchsten Siliciumgehalt zeigen die Knopfspitzen (≈ 33%), gefolgt von der epidermalen Flanke (≈ 17%) und inneren unteren Teile der Knöpfe (≈ 6%), während es in den inneren Teilen der Pflanze praktisch kein Silicium gibt. Ramanspektroskopie beweist eindeutig, dass mindestens zwei Siliciumdioxid Modifikationen vorhanden sind. Der erste Typ ist reines hydratisiertes amorphes Siliciumdioxid, das auf den Bereich der Knopfspitzen beschränkt ist. Der zweite Typ wird in der gesamten kontinuierlichen äußeren Schicht angesammelt, weist keine Ramanbanden von Silanolgruppen auf, und ist örtlich eng verknüpft mit Banden von Polysacchariden (Zellulose, Hemizellulose, Pektin) sowie anorganischen Verbindungen. Der Großteil des Siliciumdioxids in Winterschachtelhalmen ist amorph mit unwesentlichen Mengen an kristallinem a-Quarz (< 7%). Die primären Siliciumdioxidpartikel haben eine plattenähnliche Form mit einer Dicke von ungefähr 2 nm. Hochreines mesoporöses amorphes Siliciumdioxid mit offener Porosität und innerer Oberfläche bis zu 400 m2/g kann aus Winterschachtelhalmen isoliert werden. Dies wird erreicht indem man die Pflanze mit Salzsäure behandelt um die anorganischen Verunreinigungen zu entfernen, gefolgt von einer Kalzinierung, wobei die optimale Temperatur bei etwa 500°C liegt. Im Gegensatz zu den chemisch vorbehandelten Schachtelhalmen, verursacht die Kalzinierung von unbehandelten Winterschachtelhalmen einen Kollaps der biogenen Siliciumdioxidstruktur, und es werden nur sehr kleine innere Oberflächen erzielt. Dies wird hauptsächlich dem Einfluss der Alkaliionen zugeschrieben die in der unbehandelten Pflanze vorhanden sind. Es wird schließlich gezeigt, dass durch direkte Pyrolyse der HCl-behandelten Winterschachtelhalme in Argonatmosphäre reines b-SiC mit einer Oberfläche von ungefähr 12 m2/g erzeugt werden kann. Die ursprüngliche Struktur von natürlichen Winterschachtelhalmen bleibt dabei im Wesentlichen im biomorphen b-SiC erhalten. Die Ergebnisse dieser Arbeit führen zu einem besseren Verständnis des Silicifizierungsprozesses und erlauben es auch, Aussagen über die mögliche Rolle von Siliciumdioxid in E.hyemale zu treffen. Insbesondere kann den Pflanzenpolymeren die Rolle eines Templates bei der Synthese des biogenen Siliciumdioxids im Pflanzengewebe zugeschrieben werden. Das aus den Pflanzen isolierte ultrafeine amorphe Siliciumdioxid mit hoher Reinheit verspricht potentielle Anwendungen, z.B. als Adsorbent oder Katalysatorsupport, und auch als Füllmaterial für die Herstellung von Komopositmaterialien. Die Synthese von biomorphem b-SiC aus erneubaren und preiswerten Winterschachtelhalmen steht zwar erst am Anfang, jedoch konnte die vorliegende Arbeit die prinzipielle Machbarkeit aufzeigen. Dieses Material scheint sehr vielversprechend für eine Reihe technischer Anwendung, zum Beispiel als Refraktärmaterial, Katalysatorsupport oder neuartige Hochleistungskeramik. KW - Siliciumdioxid KW - Winterschachtelhalm KW - Raman KW - Röntgenbeugung KW - Mikrotomographie KW - silica KW - Equisetum hyemale KW - Raman KW - SAXS KW - microtomography Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15883 ER -