TY - GEN A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 808 KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442433 SN - 1866-8372 IS - 808 ER - TY - JOUR A1 - Burek, Katja A1 - Dengler, Joachim A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, Michael Uwe A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems JF - ChemistryOpen N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high‐quality cement‐based construction material. Complementary experiments of X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and time‐resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time‐dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium−silicate−hydrates (C−S−H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C−S−H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - cement admixtures KW - cement hydration KW - Europium KW - luminescence KW - SEM KW - X-ray diffraction Y1 - 2019 U6 - https://doi.org/10.1002/open.201900249 SN - 2191-1363 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH-Verl. CY - Weinheim ER - TY - JOUR A1 - Burek, Katja A1 - Krause, Felix A1 - Schwotzer, Matthias A1 - Nefedov, Alexei A1 - Süssmuth, Julia A1 - Haubitz, Toni A1 - Kumke, Michael Uwe A1 - Thissen, Peter T1 - Hydrophobic Properties of Calcium-Silicate Hydrates Doped with Rare-Earth Elements JF - ACS sustainable chemistry & engineering N2 - In this study, the apparent relationship between the transport process and the surface chemistry of the Calcium-Silicate Hydrate (CSH) phases was investigated. For this purpose, a method was developed to synthesize ultrathin CSH phases to be used as a model substrate with the specific modification of their structure by introducing europium (Eu(III)). The structural and chemical changes during this Eu(III)-doping were observed by means of infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and time-resolved laser fluorescence spectroscopy (TRLFS). These alterations of the CSH phases led to significant changes in the surface chemistry and consequently to considerable variations in the interaction with water, as evidenced by measurements of the contact angles on the modified model substrates. Our results provide the basis for a more profound molecular understanding of reactive transport processes in cement-based systems. Furthermore, these results broaden the perspective of improving the stability of cement-based materials, which are subjected to the impact of aggressive aqueous environments through targeted modifications of the CSH phases. KW - Rare-earth elements KW - Europium KW - Luminescence KW - Metal-proton exchange reaction KW - Contact angle KW - Infrared spectroscopy KW - X-ray photoelectron spectroscopy Y1 - 2018 U6 - https://doi.org/10.1021/acssuschemeng.8b03244 SN - 2168-0485 VL - 6 IS - 11 SP - 14669 EP - 14678 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Beck, Michael A1 - Hildebrandt, Niko A1 - Löhmannsröben, Hans-Gerd T1 - Quantum dots as acceptors in FRET-assays containing serum N2 - Quantum dots (QDs) are common as luminescing markers for imaging in biological applications because their optical properties seem to be inert against their surrounding solvent. This, together with broad and strong absorption bands and intense, sharp tuneable luminescence bands, makes them interesting candidates for methods utilizing Förster Resonance Energy Transfer (FRET), e. g. for sensitive homogeneous fluoroimmunoassays (FIA). In this work we demonstrate energy transfer from Eu3+-trisbipyridin (Eu-TBP) donors to CdSe-ZnS-QD acceptors in solutions with and without serum. The QDs are commercially available CdSe-ZnS core-shell particles emitting at 655 nm (QD655). The FRET system was achieved by the binding of the streptavidin conjugated donors with the biotin conjugated acceptors. After excitation of Eu-TBP and as result of the energy transfer, the luminescence of the QD655 acceptors also showed lengthened decay times like the donors. The energy transfer efficiency, as calculated from the decay times of the bound and the unbound components, amounted to 37%. The Förster-radius, estimated from the absorption and emission bands, was ca. 77 Å. The effective binding ratio, which not only depends on the ratio of binding pairs but also on unspecific binding, was obtained from the donor emission dependent on the concentration. As serum promotes unspecific binding, the overall FRET efficiency of the assay was reduced. We conclude that QDs are good substitutes for acceptors in FRET if combined with slow decay donors like Europium. The investigation of the influence of the serum provides guidance towards improving binding properties of QD assays. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 019 KW - Quantenpunkt KW - Lumineszenz KW - Serum KW - Europium KW - Immunoassay KW - Energietransfer KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Förster-Resonanz-Energie-Transfer KW - Quantum Dot KW - Luminescence KW - Serum KW - Europium KW - Immunoassay KW - Energy Transfer KW - FRET Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-9504 ER -