TY - JOUR A1 - Quan, Ting A1 - Haerk, Eneli A1 - Xu, Yaolin A1 - Ahmet, Ibbi A1 - Höhn, Christian A1 - Mei, Shilin A1 - Lu, Yan T1 - Unveiling the formation of solid electrolyte interphase and its temperature dependence in "Water-in-Salt" supercapacitors JF - ACS applied materials & interfaces N2 - "Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 degrees C has been studied, which presents a gravimetric capacitance of 128 F g(-1) and a volumetric capacitance of 197.12 F cm(-3) at 55 degrees C compared to 87.5 F g(-1) and 134.75 F cm(-3) at 15 degrees C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors. KW - "water-in-salt" KW - supercapacitor KW - solid electrolyte interphase KW - electrochemical impedance spectroscopy KW - temperature effect Y1 - 2021 U6 - https://doi.org/10.1021/acsami.0c19506 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 3 SP - 3979 EP - 3990 PB - American Chemical Society CY - Washington ER -