TY - CHAP A1 - Donohue, Patrick A1 - Smith, Mychal Daijon A1 - Bröker, Nina Kristin A1 - Doering, Carolin A1 - Mattos, Carla A1 - Barbirz, Stefanie T1 - Multiple Solvent Crystal Structures of phage P22 tailspike protein: An analysis of binding site hot spots and surface hydration T2 - The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology Y1 - 2015 SN - 0892-6638 SN - 1530-6860 VL - 29 PB - Federation of American Societies for Experimental Biology CY - Bethesda ER - TY - JOUR A1 - Choi, Young-Joon A1 - Klosterman, Steven J. A1 - Kummer, Volker A1 - Voglmayr, Hermann A1 - Shin, Hyeon-Dong A1 - Thines, Marco T1 - Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach JF - Molecular phylogenetics and evolution N2 - Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperms, including a large number of cultivated plants. In the largest downy mildew genus Peronospora, a phylogenetically complex clade includes the economically important downy mildew pathogens of spinach and beet, as well as the type species of the genus Peronospora. To resolve this complex clade at the species level and to infer evolutionary relationships among them, we used multi-locus phylogenetic analysis and species tree estimation. Both approaches discriminated all nine currently accepted species and revealed four previously unrecognized lineages, which are specific to a host genus or species. This is in line with a narrow species concept, i.e. that a downy mildew species is associated with only a particular host plant genus or species. Instead of applying the dubious name Peronospora farinosa, which has been proposed for formal rejection, our results provide strong evidence that Peronospora schachtii is an independent species from lineages on Atriplex and apparently occurs exclusively on Beta vulgaris. The members of the clade investigated, the Peronospora rumicis clade, associate with three different host plant families, Amaranthaceae, Caryophyllaceae, and Polygonaceae, suggesting that they may have speciated following at least two recent inter-family host shifts, rather than contemporary cospeciation with the host plants. (C) 2015 Elsevier Inc. All rights reserved. KW - Cospeciation KW - Host shift KW - Multi-locus phylogeny KW - Oomycetes KW - Peronospora farinosa KW - Species tree Y1 - 2015 U6 - https://doi.org/10.1016/j.ympev.2015.03.003 SN - 1055-7903 SN - 1095-9513 VL - 86 SP - 24 EP - 34 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Meissner, Sven A1 - Steinhauser, Dirk A1 - Dittmann-Thünemann, Elke T1 - Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis JF - Environmental microbiology N2 - Microcystis is a freshwater cyanobacterium frequently forming nuisance blooms in the summer months. The genus belongs to the predominant producers of the potent hepatotoxin microcystin. The success of Microcystis and its remarkable resistance to high light conditions are not well understood. Here, we have compared the metabolic response of Microcystis aeruginosaPCC7806, its microcystin-deficient mcyB mutant (Mut) and the cyanobacterial model organism SynechocystisPCC6803 to high light exposure of 250molphotonsm(-2)s(-1) using GC/MS-based metabolomics. Microcystis wild type and Mut show pronounced differences in their metabolic reprogramming upon high light. Seventeen percent of the detected metabolites showed significant differences between the two genotypes after high light exposure. Whereas the microcystin-producing wild type shows a faster accumulation of glycolate upon high light illumination, loss of microcystin leads to an accumulation of general stress markers such as trehalose and sucrose. The study further uncovers differences in the high light adaptation of the bloom-forming cyanobacterium Microcystis and the model cyanobacterium Synechocystis. Most notably, Microcystis invests more into carbon reserves such as glycogen after high light exposure. Our data shed new light on the lifestyle of bloom-forming cyanobacteria, the role of the widespread toxin microcystin and the metabolic diversity of cyanobacteria. Y1 - 2015 U6 - https://doi.org/10.1111/1462-2920.12565 SN - 1462-2912 SN - 1462-2920 VL - 17 IS - 5 SP - 1497 EP - 1509 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hu, Chenlin A1 - Völler, Ginka A1 - Sussmuth, Roderich A1 - Dittmann-Thünemann, Elke A1 - Kehr, Jan-Christoph T1 - Functional assessment of mycosporine-like amino acids in Microcystis aeruginosa strain PCC 7806 JF - Environmental microbiology N2 - The biological role of the widespread mycosporine-like amino acids (MAAs) in cyanobacteria is under debate. Here, we have constructed and characterized two mutants impaired in MAA biosynthesis in the bloom-forming cyanobacterium Microcystis aeruginosaPCC 7806. We could identify shinorine as the sole MAA type of the strain, which is exclusively located in the extracellular matrix. Bioinformatic studies as wells as polymerase chain reaction screening revealed that the ability to produce MAAs is sporadically distributed within the genus. Growth experiments and reactive oxygen species quantification with wild-type and mutant strains did not support a role of shinorine in protection against UV or other stress conditions in M.aeruginosaPCC 7806. The shinorine content per dry weight of cells as well as transcription of the mys gene cluster was not significantly elevated in response to UV-A, UV-B or any other stress condition tested. Remarkably, both mutants exhibited pronounced morphological changes compared with the wild type. We observed an increased accumulation and an enhanced hydrophobicity of the extracellular matrix. Our study suggests that MAAs in Microcystis play a negligible role in protection against UV radiation but might be a strain-specific trait involved in extracellular matrix formation and cell-cell interaction. Y1 - 2015 U6 - https://doi.org/10.1111/1462-2920.12577 SN - 1462-2912 SN - 1462-2920 VL - 17 IS - 5 SP - 1548 EP - 1559 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Venail, Patrick A1 - Gross, Kevin A1 - Oakley, Todd H. A1 - Narwani, Anita A1 - Allan, Eric A1 - Flombaum, Pedro A1 - Isbell, Forest A1 - Joshi, Jasmin Radha A1 - Reich, Peter B. A1 - Tilman, David A1 - van Ruijven, Jasper A1 - Cardinale, Bradley J. T1 - Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies JF - Functional ecology : an official journal of the British Ecological Society N2 - Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR.Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions. KW - biodiversity KW - community biomass KW - data synthesis KW - ecosystem functioning KW - grasslands KW - phylogenetic diversity KW - relatedness KW - stability Y1 - 2015 U6 - https://doi.org/10.1111/1365-2435.12432 SN - 0269-8463 SN - 1365-2435 VL - 29 IS - 5 SP - 615 EP - 626 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Xiang, Hai A1 - Hofreiter, Michael A1 - Zhao, Xingbo T1 - Reply to Peng et al.: Archaeological contexts should not be ignored for early chicken domestication T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1502207112 SN - 0027-8424 VL - 112 IS - 16 SP - E1972 EP - E1973 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente Jessen A1 - Heinken, Thilo A1 - Kolb, Annette A1 - Lenoir, Jonathan A1 - Naaf, Tobias A1 - Plue, Jan A1 - Selvi, Federico A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change JF - Forest ecology and management N2 - Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change. (C) 2015 Elsevier B.V. All rights reserved. KW - Acer KW - Regeneration KW - Latitudinal gradient KW - Temperature KW - Precipitation KW - Competition Y1 - 2015 U6 - https://doi.org/10.1016/j.foreco.2015.01.003 SN - 0378-1127 SN - 1872-7042 VL - 342 SP - 21 EP - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zeng, Ting A1 - Pankratov, Dmitry A1 - Falk, Magnus A1 - Leimkühler, Silke A1 - Shleev, Sergey A1 - Wollenberger, Ursula T1 - Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - A direct electron transfer (DET) based sulphite/oxygen biofuel cell is reported that utilises human sulphite oxidase (hSOx) and Myrothecium verrucaria bilirubin oxidase (MvBOx) and nanostructured gold electrodes. For bioanode construction, the nanostructured gold microelectrodes were further modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) to which polyethylene imine was covalently attached. hSOx was adsorbed onto this chemically modified nanostructured electrode with high surface loading of electroactive enzyme and in presence of sulphite high anodic bioelectrocatalytic currents were generated with an onset potential of 0.05 V vs. NHE. The biocathode contained MyBOx directly adsorbed to the deposited gold nanoparticles for cathodic oxygen reduction starting at 0.71 V vs. NHE. Both enzyme electrodes were integrated to a DET-type biofuel cell. Power densities of 8 and 1 mu W cm(-2) were achieved at 0.15 V and 0.45 V of cell voltages, respectively, with the membrane based biodevices under aerobic conditions. (C) 2014 Elsevier B.V. All rights reserved. KW - Enzymatic fuel cell KW - Microscale electrode KW - Direct electron transfer KW - Sulphite oxidase KW - Bilirubin oxidase Y1 - 2015 U6 - https://doi.org/10.1016/j.bios.2014.10.080 SN - 0956-5663 SN - 1873-4235 VL - 66 SP - 39 EP - 42 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schrapers, Peer A1 - Hartmann, Tobias A1 - Kositzki, Ramona A1 - Dau, Holger A1 - Reschke, Stefan A1 - Schulzke, Carola A1 - Leimkühler, Silke A1 - Haumann, Michael T1 - 'Sulfido and Cysteine Ligation Changes at the Molybdenum Cofactor during Substrate Conversion by Formate Dehydrogenase (FDH) from Rhodobacter capsulatus JF - Inorganic chemistry N2 - Formate dehydrogenase (FDH) enzymes are attractive catalysts for potential carbon dioxide conversion applications. The FDH from Rhodobacter capsulatus (RcFDH) binds a bis-molybdopterin-guanine-dinucleotide (bis-MGD) cofactor, facilitating reversible formate (HCOO-) to CO2 oxidation. We characterized the molecular structure of the active site of wildtype RcFDH and protein variants using X-ray absorption spectroscopy (XAS) at the Mo K-edge. This approach has revealed concomitant binding of a sulfido ligand (Mo=S) and a conserved cysteine residue (S(Cys386)) to Mo(VI) in the active oxidized molybdenum cofactor (Moco), retention of such a coordination motif at Mo(V) in a chemically reduced enzyme, and replacement of only the S(Cys386) ligand by an oxygen of formate upon Mo(IV) formation. The lack of a Mo=S bond in RcFDH expressed in the absence of FdsC implies specific metal sulfuration by this bis-MGD binding chaperone. This process still functioned in the Cys386Ser variant, showing no Mo-S(Cys386) ligand, but retaining a Mo=S bond. The C386S variant and the protein expressed without FdsC were inactive in formate oxidation, supporting that both Moligands are essential for catalysis. Low-pH inhibition of RcFDH was attributed to protonation at the conserved His387, supported by the enhanced activity of the His387Met variant at low pH, whereas inactive cofactor species showed sulfido-to-oxo group exchange at the Mo ion. Our results support that the sulfido and S(Cys386) ligands at Mo and a hydrogen-bonded network including His387 are crucial for positioning, deprotonation, and oxidation of formate during the reaction cycle of RcFDH. Y1 - 2015 U6 - https://doi.org/10.1021/ic502880y SN - 0020-1669 SN - 1520-510X VL - 54 IS - 7 SP - 3260 EP - 3271 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Röthlein, Christoph A1 - Miettinen, Markus S. A1 - Ignatova, Zoya T1 - A flexible approach to assess fluorescence decay functions in complex energy transfer systems JF - BMC biophysics N2 - Background: Time-correlated Forster resonance energy transfer (FRET) probes molecular distances with greater accuracy than intensity-based calculation of FRET efficiency and provides a powerful tool to study biomolecular structure and dynamics. Moreover, time-correlated photon count measurements bear additional information on the variety of donor surroundings allowing more detailed differentiation between distinct structural geometries which are typically inaccessible to general fitting solutions. Results: Here we develop a new approach based on Monte Carlo simulations of time-correlated FRET events to estimate the time-correlated single photon counts (TCSPC) histograms in complex systems. This simulation solution assesses the full statistics of time-correlated photon counts and distance distributions of fluorescently labeled biomolecules. The simulations are consistent with the theoretical predictions of the dye behavior in FRET systems with defined dye distances and measurements of randomly distributed dye solutions. We validate the simulation results using a highly heterogeneous aggregation system and explore the conditions to use this tool in complex systems. Conclusion: This approach is powerful in distinguishing distance distributions in a wide variety of experimental setups, thus providing a versatile tool to accurately distinguish between different structural assemblies in highly complex systems. KW - Time resolved FRET KW - Monte-Carlo simulations KW - Complex heterogeneous systems KW - Protein aggregation Y1 - 2015 U6 - https://doi.org/10.1186/s13628-015-0020-z SN - 2046-1682 VL - 8 PB - BioMed Central CY - London ER - TY - JOUR A1 - Hönicke, Christiane A1 - Bliss, Peter A1 - Moritz, Robin F. A. T1 - Effect of density on traffic and velocity on trunk trails of Formica pratensis JF - The science of nature N2 - The allocation of large numbers of workers facilitates the swift intake of locally available resources which is essential for ant colony survival. To organise the traffic between nest and food source, the black-meadow ant Formica pratensis establishes permanent trunk trails, which are maintained by the ants. To unravel the ant organisation and potential traffic rules on these trails, we analysed velocity and lane segregation under various densities by experimentally changing feeding regimes. Even under the highest ant densities achieved, we never observed any traffic jams. On the contrary, velocity increased after supplementary feeding despite an enhanced density. Furthermore, inbound ants returning to the nest had a higher velocity than those leaving the colony. Whilst at low and medium density the ants used the centre of the trail, they used the full width of the trail at high density. Outbound ants also showed some degree of lane segregation which contributes to traffic organisation. KW - Density KW - Trunk trail KW - Traffic KW - Lateralization KW - Formica pratensis Y1 - 2015 U6 - https://doi.org/10.1007/s00114-015-1267-6 SN - 0028-1042 SN - 1432-1904 VL - 102 IS - 3-4 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Contin, Andrea A1 - Frasca, Stefano A1 - Vivekananthan, Jeevanthi A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Plumere, Nicolas A1 - Schuhmann, Wolfgang T1 - A pH Responsive Redox Hydrogel for Electrochemical Detection of Redox Silent Biocatalytic Processes. Control of Hydrogel Solvation JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - The control of bioelectrocatalytic processes by external stimuli for the indirect detection of non-redox active species was achieved using an esterase and a redox enzyme both integrated within a redox hydrogel. The poly( vinyl) imidazole Os(bpy)(2)Cl hydrogel displays pH-responsive properties. The esterase catalysed reaction leads to a local pH decrease causing protonation of imidazole moieties thus increasing hydrogel solvation and mobility of the tethered Os-complexes. This is the key step to enable improved electron transfer between an aldehyde oxidoreductase and the polymer-bound Os-complexes. The off-on switch is further integrated in a biofuel cell system for self-powered signal generation. KW - pH responsive hydrogel KW - External stimuli KW - Biofuel cell KW - Self-powered biosensor KW - Solvation Y1 - 2015 U6 - https://doi.org/10.1002/elan.201400621 SN - 1040-0397 SN - 1521-4109 VL - 27 IS - 4 SP - 938 EP - 944 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Reinhard, Sandy A1 - Renner, Sandra A1 - Kupfer, Alexander T1 - Age and fecundity in Salamandra algira (Caudata: Salamandridae) JF - Salamandra : German journal of herpetology N2 - Amphibians are characterised by potentially indefinite growth. Their body size reflects a trade-off between growth and reproduction. Consequently, growth decreases or even ceases after maturation. Furthermore, the sexes often mature at different ages (sexual bimaturity). We examined fecundity patterns of the terrestrial salamander Salamandra algira (Salamandridae) and tested if age, body size and the fecundity of both sexes are connected and how these reproductive traits interact. We revealed positive correlations for female size, age and fecundity traits, i.e., egg number and volume. The male number of testes lobes was also positively correlated with age. Our study provides basic data on a rarely studied terrestrial salamandrid. Further collection-based research is needed to obtain additional data aiding the understanding of life history evolution of the Salamandridae. KW - Fecundity KW - salamanders KW - Urodela KW - Salamandra KW - skeletochronology Y1 - 2015 SN - 0036-3375 VL - 51 IS - 1 SP - 19 EP - 24 PB - Deutsche Gesellschaft für Herpetologie und Terrarienkunde CY - Darmstadt ER - TY - JOUR A1 - Kielb, Patrycja A1 - Sezer, Murat A1 - Katz, Sagie A1 - Lopez, Francesca A1 - Schulz, Christopher A1 - Gorton, Lo A1 - Ludwig, Roland A1 - Wollenberger, Ursula A1 - Zebger, Ingo A1 - Weidinger, Inez M. T1 - Spectroscopic Observation of Calcium-Induced Reorientation of Cellobiose Dehydrogenase Immobilized on Electrodes and its Effect on Electrocatalytic Activity JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Cellobiose dehydrogenase catalyzes the oxidation of various carbohydrates and is considered as a possible anode catalyst in biofuel cells. It has been shown that the catalytic performance of this enzyme immobilized on electrodes can be increased by presence of calcium ions. To get insight into the Ca2+-induced changes in the immobilized enzyme we employ surface-enhanced vibrational (SERR and SEIRA) spectroscopy together with electrochemistry. Upon addition of Ca2+ ions electrochemical measurements show a shift of the catalytic turnover signal to more negative potentials while SERR measurements reveal an offset between the potential of heme reduction and catalytic current. Comparing SERR and SEIRA data we propose that binding of Ca2+ to the heme induces protein reorientation in a way that the electron transfer pathway of the catalytic FAD center to the electrode can bypass the heme cofactor, resulting in catalytic activity at more negative potentials. KW - cellobiose dehydrogenase KW - electron transfer KW - enzyme catalysis KW - spectroelectrochemistry KW - surface-enhanced vibrational spectroscopy Y1 - 2015 U6 - https://doi.org/10.1002/cphc.201500112 SN - 1439-4235 SN - 1439-7641 VL - 16 IS - 9 SP - 1960 EP - 1968 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pinhasi, Ron A1 - Fernandes, Daniel A1 - Sirak, Kendra A1 - Novak, Mario A1 - Connell, Sarah A1 - Alpaslan-Roodenberg, Songul A1 - Gerritsen, Fokke A1 - Moiseyev, Vyacheslav A1 - Gromov, Andrey A1 - Raczky, Pal A1 - Anders, Alexandra A1 - Pietrusewsky, Michael A1 - Rollefson, Gary A1 - Jovanovic, Marija A1 - Trinhhoang, Hiep A1 - Bar-Oz, Guy A1 - Oxenham, Marc A1 - Matsumura, Hirofumi A1 - Hofreiter, Michael T1 - Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone JF - PLoS one N2 - The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (similar to 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,0001,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0129102 SN - 1932-6203 VL - 10 IS - 6 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Bogen, Oliver A1 - Bender, Olaf A1 - Loewe, Jana A1 - Blenau, Wolfgang A1 - Thevis, Beatrice A1 - Schroeder, Wolfgang A1 - Margolis, Richard U. A1 - Levine, Jon D. A1 - Hucho, Ferdinand T1 - Neuronally produced versican V2 renders C-fiber nociceptors IB4-positive JF - Journal of neurochemistry N2 - A subpopulation of nociceptors, the glial cell line-derived neurotrophic factor (GDNF)-dependent, non-peptidergic C-fibers, expresses a cell-surface glycoconjugate that can be selectively labeled with isolectin B4 (IB4), a homotetrameric plant lectin from Griffonia simplicifolia. We show that versican is an IB4-binding molecule in rat dorsal root ganglion neurons. Using reverse transcriptase polymerase chain reaction (RT-PCR), insitu hybridization and immunofluorescence experiments on rat lumbar dorsal root ganglion, we provide the first demonstration that versican is produced by neurons. In addition, by probing Western blots with splice variant-specific antibodies we show that the IB4-binding versican contains only the glycosaminoglycan alpha domain. Our data support V2 as the versican isoform that renders this subpopulation of nociceptors IB4-positive (+). A subset of nociceptors, the GDNF-dependent non-peptidergic C-fibers can be characterized by its reactivity for isolectin B4 (IB4), a plant lectin from Griffonia simplicifolia. We have previously demonstrated that versican V2 binds IB4 in a Ca2+-dependent manner. However, given that versican is thought to be the product of glial cells, it was questionable whether versican V2 can be accountable for the IB4-reactivity of this subset of nociceptors. The results presented here prove - for the first time - a neuronal origin of versican and suggest that versican V2 is the molecule that renders GDNF-dependent non-peptidergic C-fibers IB4-positive. KW - IB4 KW - nociceptors KW - pain KW - sensory neurons KW - V2 KW - versican Y1 - 2015 U6 - https://doi.org/10.1111/jnc.13113 SN - 0022-3042 SN - 1471-4159 VL - 134 IS - 1 SP - 147 EP - 155 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Eggers, Ute A1 - Arens, Michael A1 - Firla, Mario A1 - Wallschläger, Hans-Dieter T1 - To fledge or not to fledge: factors influencing the number of eggs and the eggs-to-fledglings rate in White Storks Ciconia ciconia in an agricultural environment JF - Journal of ornithology N2 - Numerous studies have explored the relationship between environmental factors and White Stork Ciconia ciconia reproduction, mainly expressing breeding success as the number of fledglings. Nonetheless, one of the most critical life-history stages in birds falls between egg-laying and fledging, and identifying the factors causing offspring mortality during this period provides valuable knowledge. We quantified the number of laid White Stork eggs and the proportion of eggs that turned into fledglings in an agriculture-dominated region in Eastern Germany. Moreover, we identified the factors among land cover, weather and arrival dates, which influenced these two reproductive measures the most, and analysed the monitored mortality causes. On average, four eggs were laid per nest, and 57.8 % of the eggs turned into fledglings. The number of eggs laid was best explained by the negative effect of the arrival date of the second stork, while the percentage of eggs that turned into fledglings was more dependent on weather: most important parameters were mean temperature in the fifth and seventh weeks after the assumed breeding start (i.e. around the assumed hatching date), and the number of consecutive days with precipitation when nestlings are assumed to be approximately 3 weeks old. In an agricultural environment, weather effects that potentially disturb food availability might be more important than effects directly affecting the survival of White Stork offspring. The most frequent observed mortality cause, nest fights, furthermore revealed the relevance of intraspecific competition in the study population. KW - Breeding success KW - Clutch size KW - Mortality causes KW - Weather impact KW - Land use KW - Arrival dates Y1 - 2015 U6 - https://doi.org/10.1007/s10336-015-1182-9 SN - 0021-8375 SN - 1439-0361 VL - 156 IS - 3 SP - 711 EP - 723 PB - Springer CY - New York ER - TY - JOUR A1 - Breitkopf, Hendrik A1 - Onstein, Renske E. A1 - Cafasso, Donata A1 - Schlüter, Philipp M. A1 - Cozzolino, Salvatore T1 - Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids JF - New phytologist : international journal of plant science N2 - Episodes of rapid speciation provide unique insights into evolutionary processes underlying species radiations and patterns of biodiversity. Here we investigated the radiation of sexually deceptive bee orchids (Ophrys). Based on a time-calibrated phylogeny and by means of ancestral character reconstruction and divergence time estimation, we estimated the tempo and mode of this radiation within a state-dependent evolutionary framework. It appears that, in the Pleistocene, the evolution of Ophrys was marked by episodes of rapid diversification coinciding with shifts to different pollinator types: from wasps to Eucera bees to Andrena and other bees. An abrupt increase in net diversification rate was detected in three clades. Among these, two phylogenetically distant lineages switched from Eucera to Andrena and other bees in a parallel fashion and at about the same time in their evolutionary history. Lack of early radiation associated with the evolution of the key innovation of sexual deception suggests that Ophrys diversification was mainly driven by subsequent ecological opportunities provided by the exploitation of novel pollinator groups, encompassing many bee species slightly differing in their sex pheromone communication systems, and by spatiotemporal fluctuations in the pollinator mosaic. KW - Andrena KW - diversification rates KW - Eucera KW - Ophrys KW - pollination syndrome KW - pollinator shift KW - sexual deception (SD) KW - species radiation Y1 - 2015 U6 - https://doi.org/10.1111/nph.13219 SN - 0028-646X SN - 1469-8137 VL - 207 IS - 2 SP - 377 EP - 389 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Allhoff, Korinna Theresa A1 - Ritterskamp, Daniel A1 - Rall, Björn C. A1 - Drossel, Barbara A1 - Guill, Christian T1 - Evolutionary food web model based on body masses gives realistic networks with permanent species turnover JF - Scientific reports N2 - The networks of predator-prey interactions in ecological systems are remarkably complex, but nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In order to understand the mechanism driving the complexity and stability of such food webs, we developed an eco-evolutionary model in which new species emerge as modifications of existing ones and dynamic ecological interactions determine which species are viable. The food-web structure thereby emerges from the dynamical interplay between speciation and trophic interactions. The proposed model is less abstract than earlier evolutionary food web models in the sense that all three evolving traits have a clear biological meaning, namely the average body mass of the individuals, the preferred prey body mass, and the width of their potential prey body mass spectrum. We observed networks with a wide range of sizes and structures and high similarity to natural food webs. The model networks exhibit a continuous species turnover, but massive extinction waves that affect more than 50% of the network are not observed. Y1 - 2015 U6 - https://doi.org/10.1038/srep10955 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Spricigo, Roberto A1 - Leimkühler, Silke A1 - Gorton, Lo A1 - Scheller, Frieder W. A1 - Wollenberger, Ursula T1 - The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - We report electron transfer between the catalytic molybdenum cofactor (Moco) domain of human sulfite oxidase (hSO) and electrodes through a poly(vinylpyridine)-bound [osmium(N,N'-methyl-2,2'-biimidazole)(3)](2+/3+) complex as the electron-transfer mediator. The biocatalyst was immobilized in this low-potential redox polymer on a carbon electrode. Upon the addition of sulfite to the immobilized separate Moco domain, the generation of a significant catalytic current demonstrated that the catalytic center is effectively wired and active. The bioelectrocatalytic current of the wired separate catalytic domain reached 25% of the signal of the wired full molybdoheme enzyme hSO, in which the heme b(5) is involved in the electron-transfer pathway. This is the first report on a catalytically active wired molybdenum cofactor domain. The formal potential of this electrochemical mediator is between the potentials of the two cofactors of hSO, and as hSO can occupy several conformations in the polymer matrix, it is imaginable that electron transfer from the catalytic site to the electrode through the osmium center occurs for the hSO molecules in which the Moco domain is sufficiently accessible. The observation of catalytic oxidation currents at low potentials is favorable for applications in bioelectronic devices. KW - Metalloenzymes KW - Enzyme catalysis KW - Immobilization KW - Osmium Y1 - 2015 U6 - https://doi.org/10.1002/ejic.201500034 SN - 1434-1948 SN - 1099-0682 IS - 21 SP - 3526 EP - 3531 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Reinhard, Sandy A1 - Kupfer, Alexander T1 - Sexual dimorphism in a French population of the marbled newt, Triturus marmoratus (Urodela: Salamandridae) JF - Salamandra : German journal of herpetology N2 - Amphibians have developed a large set of life-history strategies and demonstrate an impressive diversity of reproductive patterns compared to other vertebrates. Various selection pressures impact on males and females and see them produce different degrees of sexual dimorphism in order to maximise their reproductive success. In an extended morphometric analysis that included 27 body-and head-related characters, we studied the pattern of sexual dimorphism of a French population of the marbled newt, Triturus marmoratus. We analysed the characters by employing GLM methods (ANCOVA) and found 16 of them to be dimorphic between the sexes. In general, females differ in head-body size, such as snout-vent length, but males rather in shape or body proportions (e.g., limb proportions). The various expressions of sexual size dimorphism among large-bodied marbled newts and allies demonstrate that more than one evolutionary model works simultaneously on different traits. KW - SSD KW - fecundity KW - sexual selection KW - salamanders KW - Triturus KW - morphometrics Y1 - 2015 SN - 0036-3375 VL - 51 IS - 2 SP - 121 EP - 128 PB - Deutsche Gesellschaft für Herpetologie und Terrarienkunde CY - Darmstadt ER - TY - JOUR A1 - Adamla, Frauke A1 - Ignatova, Zoya T1 - Somatic expression of unc-54 and vha-6 mRNAs declines but not pan-neuronal rgef-1 and unc-119 expression in aging Caenorhabditis elegans JF - Scientific reports N2 - Aging is a highly controlled biological process characterized by a progressive deterioration of various cellular activities. One of several hallmarks of aging describes a link to transcriptional alteration, suggesting that it may impact the steady-state mRNA levels. We analyzed the mRNA steady-state levels of polyCAG-encoding transgenes and endogenous genes under the control of well-characterized promoters for intestinal (vha-6), muscular (unc-54, unc-15) and pan-neuronal (rgef-1, unc-119) expression in the nematode Caenorhabditis elegans. We find that there is not a uniform change in transcriptional profile in aging, but rather a tissue-specific difference in the mRNA levels of these genes. While levels of mRNA in the intestine (vha-6) and muscular (unc-54, unc-15) cells decline with age, pan-neuronal tissue shows more stable mRNA expression (rgef-1, unc-119) which even slightly increases with the age of the animals. Our data on the variations in the mRNA abundance from exemplary cases of endogenous and transgenic gene expression contribute to the emerging evidence for tissue-specific variations in the aging process. Y1 - 2015 U6 - https://doi.org/10.1038/srep10692 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - CHAP A1 - Hanke-Gogokhia, Christin A1 - Frederick, Jeanne M. A1 - Zhang, Houbin A1 - Baehr, Wolfgang T1 - ARL3 regulates transport of prenylated and acylated proteins to photoreceptor outer segment in mouse retina T2 - Investigative ophthalmology & visual science Y1 - 2015 SN - 0146-0404 SN - 1552-5783 VL - 56 IS - 7 PB - Association for Research in Vision and Opthalmology CY - Rockville ER - TY - JOUR A1 - Synodinos, Alexios D. A1 - Tietjen, Britta A1 - Jeltsch, Florian T1 - Facilitation in drylands: Modeling a neglected driver of savanna dynamics JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Our current understanding regarding the functioning of the savanna ecosystem describes savannas as either competition- or disturbance-dependent. Within this generalized view, the role and importance of facilitation have been mostly neglected. This study presents a mathematical model of savannas with coupled soil moisture-vegetation dynamics, which includes interspecific competition and environmental disturbance. We find that there exist environmental and climatic conditions where grass facilitation toward trees plays an important role in supporting tree cover and by extension preserving the savanna biome. We, therefore, argue that our theoretical results in combination with the first empirical studies on the subject should stimulate further research into the role of facilitation in the savanna ecosystem, particularly when analyzing the impact of past and projected climatic changes on it. (C) 2015 Elsevier B.V. All rights reserved. KW - Ecohydrological modeling KW - ODE model KW - Coexistence KW - Biome shifts KW - Fire KW - Grazing Y1 - 2015 U6 - https://doi.org/10.1016/j.ecolmodel.2015.02.015 SN - 0304-3800 SN - 1872-7026 VL - 304 SP - 11 EP - 21 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Seifert, Linda I. A1 - Weithoff, Guntram A1 - Vos, Matthijs T1 - Extreme heat changes post-heat wave community reassembly JF - Ecology and evolution N2 - Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29 degrees C and 39 degrees C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39 degrees C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29 degrees C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re-introduction programs and to our ability to restore ecosystems damaged by environmental extremes. KW - Biodiversity KW - climate change KW - conservation KW - ecological restoration KW - extinction KW - extreme temperature events KW - global warming KW - maximum temperature KW - variability Y1 - 2015 U6 - https://doi.org/10.1002/ece3.1490 SN - 2045-7758 VL - 5 IS - 11 SP - 2140 EP - 2148 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Yildirim-Semerci, Cigdem A1 - Benayahu, Dafna A1 - Adamovski, Miriam A1 - Wollenberger, Ursula T1 - An Electrochemical Assay for Monitoring Differentiation of the Osteoblastic Cell Line (MBA-15) on the Sensor Chip JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - An electrochemical assay for the indication of the activity of the cell bound differentiation marker alkaline phosphatase (ALP) is proposed using voltammetry on an in-vitro cell culture. The basis of the assay is cultivation of cells on gold microelectrodes in wells of a microplate, catalytic hydrolysis of p-aminophenyl phosphate by ALP and indication of p-aminophenol oxidation by square wave voltammetry (SWV) with the sensors onto which the cells attached. The morphology of the bone marrow stromal cell line (MBA-15) on the electrode surface was investigated and it exhibited in vitro osteogenic characteristics. Since ALP is expressed on the cell surface in early differentiation stage of osteoblastic cells, its activity was followed after different culture times over a period of 144 h by recording repetitive voltammograms at different time points upon addition of the substrate p-aminophenyl phosphate. The ALP activity was estimated from the signal increase related to formation rate of p-aminophenol and the number of cells. The highest value was measured at 120 h, when the cells reached confluence. The results of the electrochemical activity assay are consistent with the colorimetric acquired value from p-nitrophenol formation rate. KW - Alkaline phosphatase KW - Osteoblast KW - Voltammetry KW - Biomarker KW - p-Aminophenol Y1 - 2015 U6 - https://doi.org/10.1002/elan.201400684 SN - 1040-0397 SN - 1521-4109 VL - 27 IS - 6 SP - 1350 EP - 1358 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hess, Anne-Katrin A1 - Saffert, Paul A1 - Liebeton, Klaus A1 - Ignatova, Zoya T1 - Optimization of Translation Profiles Enhances Protein Expression and Solubility JF - PLoS one N2 - mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0127039 SN - 1932-6203 VL - 10 IS - 5 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Xiang, Hai A1 - Gao, Jianqiang A1 - Yu, Baoquan A1 - Hofreiter, Michael A1 - Zhao, Xingbo T1 - Reply to Peters et al.: Further discussions confirm early Holocene chicken domestication in northern China T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1503956112 SN - 0027-8424 VL - 112 IS - 19 SP - E2416 EP - E2416 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Peng, Lei A1 - Utesch, Tillmann A1 - Yarman, Aysu A1 - Jeoung, Jae-Hun A1 - Steinborn, Silke A1 - Dobbek, Holger A1 - Mroginski, Maria Andrea A1 - Tanne, Johannes A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein JF - Chemistry - a European journal N2 - Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant k(s) values between 0.93 and 2.86 s(-1) and apparent formal potentials E-app(0)' between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. KW - electrochemistry KW - electron transfer KW - heme proteins KW - molecular modeling KW - monolayers Y1 - 2015 U6 - https://doi.org/10.1002/chem.201405932 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 20 SP - 7596 EP - 7602 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yokoyama, Kenichi A1 - Leimkühler, Silke T1 - The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria JF - Biochimica et biophysica acta : Molecular cell research N2 - The biosynthesis of the molybdenum cofactor (Moco) has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the assembly of molybdoenzymes and the biosynthesis of FeS clusters has been identified in the recent years: 1) the synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) the sulfurtransferase for the dithiolene group in Moco is also involved in the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the addition of a sulfido-ligand to the molybdenum atom in the active site additionally involves a sulfurtransferase, and 4) most molybdoenzymes in bacteria require FeS clusters as redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. (C) 2014 Elsevier B.V. All rights reserved. KW - Molybdenum-iron-iron-sulfur cluster KW - Molybdenum cofactor KW - tRNA KW - Sulfur transfer KW - L-Cysteine desulfurase Y1 - 2015 U6 - https://doi.org/10.1016/j.bbamcr.2014.09.021 SN - 0167-4889 SN - 0006-3002 VL - 1853 IS - 6 SP - 1335 EP - 1349 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kanzleiter, Timo A1 - Jaehnert, Markus A1 - Schulze, Gunnar A1 - Selbig, Joachim A1 - Hallahan, Nicole A1 - Schwenk, Robert Wolfgang A1 - Schürmann, Annette T1 - Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice JF - American journal of physiology : Endocrinology and metabolism N2 - The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage > 10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training. KW - DNA methylation KW - regular exercise training KW - muscle development Y1 - 2015 U6 - https://doi.org/10.1152/ajpendo.00289.2014 SN - 0193-1849 SN - 1522-1555 VL - 308 IS - 10 SP - E912 EP - E920 PB - American Chemical Society CY - Bethesda ER - TY - JOUR A1 - Jetzschmann, Katharina J. A1 - Jagerszki, Gyula A1 - Dechtrirat, Decha A1 - Yarman, Aysu A1 - Gajovic-Eichelmann, Nenad A1 - Gilsing, Hans-Detlev A1 - Schulz, Burkhard A1 - Gyurcsanyi, Robert E. A1 - Scheller, Frieder W. T1 - Vectorially Imprinted Hybrid Nanofilm for Acetylcholinesterase Recognition JF - Advanced functional materials N2 - Effective recognition of enzymatically active tetrameric acetylcholinesterase (AChE) is accomplished by a hybrid nanofilm composed of a propidium-terminated self-assembled monolayer (Prop-SAM) which binds AChE via its peripheral anionic site (PAS) and an ultrathin electrosynthesized molecularly imprinted polymer (MIP) cover layer of a novel carboxylate-modified derivative of 3,4-propylenedioxythiophene. The rebinding of the AChE to the MIP/Prop-SAM nanofilm covered electrode is detected by measuring in situ the enzymatic activity. The oxidative current of the released thiocholine is dependent on the AChE concentration from approximate to 0.04 x 10(-6) to 0.4 x 10(-6)m. An imprinting factor of 9.9 is obtained for the hybrid MIP, which is among the best values reported for protein imprinting. The dissociation constant characterizing the strength of the MIP-AChE binding is 4.2 x 10(-7)m indicating the dominant role of the PAS-Prop-SAM interaction, while the benefit of the MIP nanofilm covering the Prop-SAM layer is the effective suppression of the cross-reactivity toward competing proteins as compared with the Prop-SAM. The threefold selectivity gain provided by i) the shape-specific MIP filter, ii) the propidium-SAM, iii) signal generation only by the AChE bound to the nanofilm shows promise for assessing AChE activity levels in cerebrospinal fluid. KW - acetylcholinesterase KW - biomimetic sensors KW - molecularly imprinted electropolymers KW - peripheral anionic site KW - propidium Y1 - 2015 U6 - https://doi.org/10.1002/adfm.201501900 SN - 1616-301X SN - 1616-3028 VL - 25 IS - 32 SP - 5178 EP - 5183 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hartmann, Tobias A1 - Schwanhold, Nadine A1 - Leimkühler, Silke T1 - Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria JF - Biochimica et biophysica acta : Proteins and proteomics N2 - The global carbon cycle depends on the biological transformations of C-1 compounds, which include the reductive incorporation of CO2 into organic molecules (e.g. in photosynthesis and other autotrophic pathways), in addition to the production of CO2 from formate, a reaction that is catalyzed by formate dehydrogenases (FDHs). FDHs catalyze, in general, the oxidation of formate to CO2 and H+. However, selected enzymes were identified to act as CO2 reductases, which are able to reduce CO2 to formate under physiological conditions. This reaction is of interest for the generation of formate as a convenient storage form of H-2 for future applications. Cofactor-containing FDHs are found in anaerobic bacteria and archaea, in addition to facultative anaerobic or aerobic bacteria. These enzymes are highly diverse and employ different cofactors such as the molybdenum cofactor (Moco), FeS clusters and flavins, or cytochromes. Some enzymes include tungsten (W) in place of molybdenum (Mo) at the active site. For catalytic activity, a selenocysteine (SeCys) or cysteine (Cys) ligand at the Mo atom in the active site is essential for the reaction. This review will focus on the characterization of Mo- and W-containing FDHs from bacteria, their active site structure, subunit compositions and its proposed catalytic mechanism. We will give an overview on the different mechanisms of substrate conversion available so far, in addition to providing an outlook on bio-applications of FDHs. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. (C) 2014 Elsevier B.V. All rights reserved. KW - Molybdenum cofactor KW - L-Cysteine desulfurase KW - Formate dehydrogenase KW - Chaperone KW - Bis-MGD Y1 - 2015 U6 - https://doi.org/10.1016/j.bbapap.2014.12.006 SN - 1570-9639 SN - 0006-3002 VL - 1854 IS - 9 SP - 1090 EP - 1100 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cornetti, Luca A1 - Valente, Luis M. A1 - Dunning, Luke T. A1 - Quan, Xueping A1 - Black, Richard A. A1 - Hebert, Olivier A1 - Savolainen, Vincent T1 - The Genome of the "Great Speciator" Provides Insights into Bird Diversification JF - Genome biology and evolution N2 - Among birds, white-eyes (genusZosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the 'great speciator." The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird radiation. KW - genome evolution KW - positive selection KW - gene duplication KW - phylogenomics KW - demography KW - morphological divergence Y1 - 2015 U6 - https://doi.org/10.1093/gbe/evv168 SN - 1759-6653 VL - 7 IS - 9 SP - 2680 EP - 2691 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zeng, Ting A1 - Leimkühler, Silke A1 - Koetz, Joachim A1 - Wollenberger, Ursula T1 - Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode JF - ACS applied materials & interfaces N2 - The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO. KW - human sulfite oxidase KW - direct electrochemistry KW - bioelectrocatalysis KW - photocurrent KW - CdS quantum dots Y1 - 2015 U6 - https://doi.org/10.1021/acsami.5b06665 SN - 1944-8244 VL - 7 IS - 38 SP - 21487 EP - 21494 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hahn, Aaron A1 - Engelhard, Christopher A1 - Reschke, Stefan A1 - Teutloff, Christian A1 - Bittl, Robert A1 - Leimkühler, Silke A1 - Risse, Thomas T1 - Structural Insights into the Incorporation of the Mo Cofactor into Sulfite Oxidase from Site-Directed Spin Labeling JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Mononuclear molybdoenzymes catalyze a broad range of redox reactions and are highly conserved in all kingdoms of life. This study addresses the question of how the Mo cofactor (Moco) is incorporated into the apo form of human sulfite oxidase (hSO) by using site-directed spin labeling to determine intramolecular distances in the nanometer range. Comparative measurements of the holo and apo forms of hSO enabled the localization of the corresponding structural changes, which are localized to a short loop (residues 263-273) of the Moco-containing domain. A flap-like movement of the loop provides access to the Moco binding-pocket in the apo form of the protein and explains the earlier studies on the in vitro reconstitution of apo-hSO with Moco. Remarkably, the loop motif can be found in a variety of structurally similar molybdoenzymes among various organisms, thus suggesting a common mechanism of Moco incorporation. KW - biocatalysis KW - cofactors KW - enzymes KW - EPR spectroscopy KW - protein structures Y1 - 2015 U6 - https://doi.org/10.1002/anie.201504772 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 40 SP - 11865 EP - 11869 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Riedelsberger, Janin A1 - Dreyer, Ingo A1 - Gonzalez, Wendy T1 - Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History JF - PLoS one N2 - Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0137600 SN - 1932-6203 VL - 10 IS - 9 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Mazumder, Mostafizur A1 - Brechun, Katherine E. A1 - Kim, Yongjoo B. A1 - Hoffmann, Stefan A. A1 - Chen, Yih Yang A1 - Keiski, Carrie-Lynn A1 - Arndt, Katja Maren A1 - McMillen, David R. A1 - Woolley, G. Andrew T1 - An Escherichia coli system for evolving improved light-controlled DNA-binding proteins JF - Protein engineering design & selection N2 - Light-switchable proteins offer numerous opportunities as tools for manipulating biological systems with exceptional degrees of spatiotemporal control. Most designed light-switchable proteins currently in use have not been optimised using the randomisation and selection/screening approaches that are widely used in other areas of protein engineering. Here we report an approach for screening light-switchable DNA-binding proteins that relies on light-dependent repression of the transcription of a fluorescent reporter. We demonstrate that the method can be used to recover a known light-switchable DNA-binding protein from a random library. KW - directed evolution KW - fluorescent reporter KW - optogenetics Y1 - 2015 U6 - https://doi.org/10.1093/protein/gzv033 SN - 1741-0126 SN - 1741-0134 VL - 28 IS - 9 SP - 293 EP - 302 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Campbell, Kevin L. A1 - Hofreiter, Michael T1 - Resurrecting phenotypes from ancient DNA sequences: promises and perspectives JF - Canadian journal of zoology = Revue canadienne de zoologie N2 - Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller's sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these "living" processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology. KW - paleophysiology KW - ancient DNA KW - extinct species KW - adaptation KW - protein structure Y1 - 2015 U6 - https://doi.org/10.1139/cjz-2014-0337 SN - 0008-4301 SN - 1480-3283 VL - 93 IS - 9 SP - 701 EP - 710 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Albert, Aurelie A1 - Auffret, Alistair G. A1 - Cosyns, Eric A1 - Cousins, Sara A. O. A1 - Eichberg, Carsten A1 - Eycott, Amy E. A1 - Heinken, Thilo A1 - Hoffmann, Maurice A1 - Jaroszewicz, Bogdan A1 - Malo, Juan E. A1 - Marell, Anders A1 - Mouissie, Maarten A1 - Pakeman, Robin J. A1 - Picard, Melanie A1 - Plue, Jan A1 - Poschlod, Peter A1 - Provoost, Sam A1 - Schulze, Kiowa Alraune A1 - Baltzinger, Christophe T1 - Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis JF - Oikos N2 - Plant communities are often dispersal-limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter - which differentially affects individuals according to their characteristics and shapes species assemblages - and that the filter varies according to the dispersal mechanism (endozoochory, fur-epizoochory and hoof-epizoochory). We conducted two-step individual participant data meta-analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non-dispersed plants. We found that ungulates dispersed at least 44% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof-epizoochory was more likely for light diaspores without hooked appendages. Fur-epizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate-dispersed and non-dispersed plant species mostly below 25%), whereas hoof-epizoochory had a stronger effect (eight characteristics included five ones with above 75% variation), and fur-epizoochory an even stronger one (nine characteristics included six ones with above 75% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales. Y1 - 2015 U6 - https://doi.org/10.1111/oik.02512 SN - 0030-1299 SN - 1600-0706 VL - 124 IS - 9 SP - 1109 EP - 1120 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Heinze, Johannes A1 - Werner, Tony A1 - Weber, Ewald A1 - Rillig, Matthias C. A1 - Joshi, Jasmin Radha T1 - Soil biota effects on local abundances of three grass species along a land-use gradient JF - Oecologia N2 - Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands. KW - Biodiversity KW - Grassland KW - Land-use intensity KW - Community composition KW - Plant-soil feedback Y1 - 2015 U6 - https://doi.org/10.1007/s00442-015-3336-0 SN - 0029-8549 SN - 1432-1939 VL - 179 IS - 1 SP - 249 EP - 259 PB - Springer CY - New York ER - TY - JOUR A1 - Bernhardt-Römermann, Markus A1 - Baeten, Lander A1 - Craven, Dylan A1 - De Frenne, Pieter A1 - Hedl, Radim A1 - Lenoir, Jonathan A1 - Bert, Didier A1 - Brunet, Jorg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Dierschke, Hartmut A1 - Dirnboeck, Thomas A1 - Dörfler, Inken A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Keczynski, Andrzej A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Macek, Martin A1 - Malis, Frantisek A1 - Mirtl, Michael A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schmidt, Wolfgang A1 - Standovar, Tibor A1 - Toth, Zoltan A1 - Van Calster, Hans A1 - Verstraeten, Gorik A1 - Vladovic, Jozef A1 - Vild, Ondrej A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Drivers of temporal changes in temperate forest plant diversity vary across spatial scales JF - Global change biology N2 - Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions. KW - atmospheric nitrogen deposition KW - evenness KW - forestREplot KW - forest management KW - game browsing KW - Shannon diversity KW - spatiotemporal resurvey data KW - species richness Y1 - 2015 U6 - https://doi.org/10.1111/gcb.12993 SN - 1354-1013 SN - 1365-2486 VL - 21 IS - 10 SP - 3726 EP - 3737 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Dittmann-Thünemann, Elke A1 - Gugger, Muriel A1 - Sivonen, Kaarina A1 - Fewer, David P. T1 - Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria JF - Trends in microbiology N2 - Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Y1 - 2015 U6 - https://doi.org/10.1016/j.tim.2015.07.008 SN - 0966-842X SN - 1878-4380 VL - 23 IS - 10 SP - 642 EP - 652 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Sonnemann, Ilja A1 - Pfestorf, Hans A1 - Jeltsch, Florian A1 - Wurst, Susanne T1 - Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance JF - PLoS one N2 - Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive-and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0141148 SN - 1932-6203 VL - 10 IS - 10 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Li, Chenhong A1 - Corrigan, Shannon A1 - Yang, Lei A1 - Straube, Nicolas A1 - Harris, Mark A1 - Hofreiter, Michael A1 - White, William T. A1 - Naylor, Gavin J. P. T1 - DNA capture reveals transoceanic gene flow in endangered river sharks JF - Proceedings of the National Academy of Sciences of the United States of America N2 - For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks. KW - freshwater sharks KW - DNA KW - museum specimens Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1508735112 SN - 0027-8424 VL - 112 IS - 43 SP - 13302 EP - 13307 PB - National Acad. of Sciences CY - Washington ER - TY - INPR A1 - Kehr, Jan-Christoph A1 - Dittmann-Thünemann, Elke T1 - Protective tunicate endosymbiont with extreme genome reduction T2 - Environmental microbiology Y1 - 2015 U6 - https://doi.org/10.1111/1462-2920.12941 SN - 1462-2912 SN - 1462-2920 VL - 17 IS - 10 SP - 3430 EP - 3432 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Prokopovic, Vladimir Z. A1 - Duschl, Claus A1 - Volodkin, Dmitry T1 - Hyaluronic Acid/Poly-l-Lysine Multilayers as Reservoirs for Storage and Release of Small Charged Molecules JF - Macromolecular bioscience N2 - Polyelectrolyte multilayer films are nowadays very attractive for bioapplications due to their tunable properties and ability to control cellular response. Here we demonstrate that multilayers made of hyaluronic acid and poly-l-lysine act as high-capacity reservoirs for small charged molecules. Strong accumulation within the film is explained by electrostatically driven binding to free charges of polyelectrolytes. Binding and release mechanisms are discussed based on charge balance and polymer dynamics in the film. Our results show that transport of molecules through the film-solution interface limits the release rate. The multilayers might serve as an effective platform for drug delivery and tissue engineering due to high potential for drug loading and controlled release. KW - diffusion KW - drug delivery KW - dye KW - release mechanism Y1 - 2015 U6 - https://doi.org/10.1002/mabi.201500093 SN - 1616-5187 SN - 1616-5195 VL - 15 IS - 10 SP - 1357 EP - 1363 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Le Duc, Diana A1 - Renaud, Gabriel A1 - Krishnan, Arunkumar A1 - Almen, Markus Sallman A1 - Huynen, Leon A1 - Prohaska, Sonja J. A1 - Ongyerth, Matthias A1 - Bitarello, Barbara D. A1 - Schioth, Helgi B. A1 - Hofreiter, Michael A1 - Stadler, Peter F. A1 - Prüfer, Kay A1 - Lambert, David A1 - Kelso, Janet A1 - Schöneberg, Torsten T1 - Kiwi genome provides insights into evolution of a nocturnal lifestyle JF - Genome biology : biology for the post-genomic era N2 - Background: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. Results: We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. Conclusions: The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites. Y1 - 2015 U6 - https://doi.org/10.1186/s13059-015-0711-4 SN - 1465-6906 SN - 1474-760X VL - 16 PB - BioMed Central CY - London ER - TY - JOUR A1 - Vogt, Julia H. M. A1 - Schippers, Jos H. M. T1 - Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants JF - Frontiers in plant science N2 - The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants. KW - PAS domain KW - circadian clock KW - signal transduction KW - environmental stress response KW - growth adaptation Y1 - 2015 U6 - https://doi.org/10.3389/fpls.2015.00513 SN - 1664-462X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Soliveres, Santiago A1 - Maestre, Fernando T. A1 - Ulrich, Werner A1 - Manning, Peter A1 - Boch, Steffen A1 - Bowker, Matthew A. A1 - Prati, Daniel A1 - Delgado-Baquerizo, Manuel A1 - Quero, Jose L. A1 - Schöning, Ingo A1 - Gallardo, Antonio A1 - Weisser, Wolfgang W. A1 - Müller, Jörg A1 - Socher, Stephanie A. A1 - Garcia-Gomez, Miguel A1 - Ochoa, Victoria A1 - Schulze, Ernst-Detlef A1 - Fischer, Markus A1 - Allan, Eric T1 - Intransitive competition is widespread in plant communities and maintains their species richness JF - Ecology letters N2 - Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in >65% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation. KW - Aridity KW - biodiversity KW - coexistence KW - drylands KW - land use KW - mesic grasslands KW - rock-paper-scissors game Y1 - 2015 U6 - https://doi.org/10.1111/ele.12456 SN - 1461-023X SN - 1461-0248 VL - 18 IS - 8 SP - 790 EP - 798 PB - Wiley-Blackwell CY - Hoboken ER -