TY - JOUR A1 - van Kleunen, Mark A1 - Dawson, Wayne A1 - Essl, Franz A1 - Pergl, Jan A1 - Winter, Marten A1 - Weber, Ewald A1 - Kreft, Holger A1 - Weigelt, Patrick A1 - Kartesz, John A1 - Nishino, Misako A1 - Antonova, Liubov A. A1 - Barcelona, Julie F. A1 - Cabezas, Francisco J. A1 - Cardenas, Dairon A1 - Cardenas-Toro, Juliana A1 - Castano, Nicolas A1 - Chacon, Eduardo A1 - Chatelain, Cyrille A1 - Ebel, Aleksandr L. A1 - Figueiredo, Estrela A1 - Fuentes, Nicol A1 - Groom, Quentin J. A1 - Henderson, Lesley A1 - Inderjit, A1 - Kupriyanov, Andrey A1 - Masciadri, Silvana A1 - Meerman, Jan A1 - Morozova, Olga A1 - Moser, Dietmar A1 - Nickrent, Daniel L. A1 - Patzelt, Annette A1 - Pelser, Pieter B. A1 - Baptiste, Maria P. A1 - Poopath, Manop A1 - Schulze, Maria A1 - Seebens, Hanno A1 - Shu, Wen-sheng A1 - Thomas, Jacob A1 - Velayos, Mauricio A1 - Wieringa, Jan J. A1 - Pysek, Petr T1 - Global exchange and accumulation of non-native plants JF - Nature : the international weekly journal of science N2 - All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch(1,2) is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage(3). So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species. Y1 - 2015 U6 - https://doi.org/10.1038/nature14910 SN - 0028-0836 SN - 1476-4687 VL - 525 IS - 7567 SP - 100 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Apelt, Federico A1 - Breuer, David A1 - Nikoloski, Zoran A1 - Stitt, Mark A1 - Kragler, Friedrich T1 - Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth JF - The plant journal N2 - Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D), we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants. Significance Statement Phytotyping(4D) is a non-invasive and accurate imaging system that combines a 3D light-field camera with an automated pipeline, which provides validated measurements of growth, movement, and other morphological features at the rosette and single-leaf level. In a case study in which we investigated the link between starch and growth, we demonstrated that Phytotyping(4D) is a key step towards bridging the gap between phenotypic observations and the rich genetic and metabolic knowledge. KW - plant growth KW - hyponasty KW - 3D imaging KW - light-field camera KW - Arabidopsis thaliana KW - pgm KW - technical advance Y1 - 2015 U6 - https://doi.org/10.1111/tpj.12833 SN - 0960-7412 SN - 1365-313X VL - 82 IS - 4 SP - 693 EP - 706 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Cui, Xiao A1 - Lv, Yang A1 - Chen, Miaolin A1 - Nikoloski, Zoran A1 - Twell, David A1 - Zhang, Dabing T1 - Young Genes out of the Male: An Insight from Evolutionary Age Analysis of the Pollen Transcriptome JF - Molecular plant N2 - The birth of new genes in genomes is an important evolutionary event. Several studies reveal that new genes in animals tend to be preferentially expressed in male reproductive tissues such as testis (Betran et al., 2002; Begun et al., 2007; Dubruille et al., 2012), and thus an "out of testis' hypothesis for the emergence of new genes has been proposed (Vinckenbosch et al., 2006; Kaessmann, 2010). However, such phenomena have not been examined in plant species. Here, by employing a phylostratigraphic method, we dated the origin of protein-coding genes in rice and Arabidopsis thaliana and observed a number of young genes in both species. These young genes tend to encode short extracellular proteins, which may be involved in rapid evolving processes, such as reproductive barriers, species specification, and antimicrobial processes. Further analysis of transcriptome age indexes across different tissues revealed that male reproductive cells express a phylogenetically younger transcriptome than other plant tissues. Compared with sporophytic tissues, the young transcriptomes of the male gametophyte displayed greater complexity and diversity, which included a higher ratio of anti-sense and inter-genic transcripts, reflecting a pervasive transcription state that facilitated the emergence of new genes. Here, we propose that pollen may act as an "innovation incubator' for the birth of de novo genes. With cases of male-biased expression of young genes reported in animals, the "new genes out of the male' model revealed a common evolutionary force that drives reproductive barriers, species specification, and the upgrading of defensive mechanisms against pathogens. KW - pollen KW - evolution KW - young genes KW - transcriptome Y1 - 2015 U6 - https://doi.org/10.1016/j.molp.2014.12.008 SN - 1674-2052 SN - 1752-9867 VL - 8 IS - 6 SP - 935 EP - 945 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Üstün, Suayib A1 - Bartetzko, Verena A1 - Börnke, Frederik T1 - The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid T2 - Frontiers in plant science N2 - XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 432 KW - Xanthomonas KW - type-III effector KW - XopJ KW - avirulence KW - salicylic acid Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-406537 ER - TY - JOUR A1 - Üstün, Suayib A1 - Bartetzko, Verena A1 - Börnke, Frederik T1 - The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid JF - Frontiers in plant science N2 - XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana. KW - Xanthomonas KW - type-III effector KW - XopJ KW - avirulence KW - salicylic acid Y1 - 2015 U6 - https://doi.org/10.3389/fpls.2015.00599 SN - 1664-462X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Sicard, Adrien A1 - Kappel, Christian A1 - Josephs, Emily B. A1 - Wha Lee, Young A1 - Marona, Cindy A1 - Stinchcombe, John R. A1 - Wright, Stephen I. A1 - Lenhard, Michael T1 - Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella N2 - In the Bateson–Dobzhansky–Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 231 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93568 ER - TY - THES A1 - Kreibich, Christoph T1 - Erucasäure in Brassica napus L. - ein phänotypisches Merkmal im Genetikunterricht und ihr Nachweis mit Hilfe von Papierchromatographie T1 - Erucic acid in Brassica napus L. - a phenotypic trait in genetics and their detection by paper chromatography N2 - Erucic acid is a mono-unsaturated fatty acid that is naturally found in large quantities in seeds of rapeseed (Brassica napus L.) and other Brassica species. Erucic acid represents an important resource in the industry, however, due to its injurious effects on the heart muscle, this fatty acid is considered to be nutritionally harmful. Therefore, new high quality rapeseed cultivars were bred in order to eliminate the content of erucic acid in rapeseed oil at the end of the 20th century. In the breeding process, paper chromatography was used for the distinction between seeds with high and low content of erucic acid. Here, this outdated method was revised and optimized for educational purposes. By means of paper chromatography the qualitative content of erucic acid and four other unsaturated fatty acids was analyzed in rapeseed and linseed. The character ‘erucic acid content’, determined by two additive genes, can be used as a practical example of a phenotypic marker in school lessons, for instance, in the course 'achievement of plant breeding'. Thus, this qualitative analysis of erucic acid content enables the teacher to connect classical genetics with modern methods of plant genetics. N2 - Erucasäure ist eine einfach ungesättigte Fettsäure, die sich in großer Menge im Samen von Raps und anderen Kreuzblütlern findet. Ernährungsphysiologisch gilt sie als problematisch, da sie eine nachweislich schädliche Wirkung auf die Herzmuskulatur hat. Daher wurde sie im Laufe des 20. Jahrhunderts zum größten Teil aus dem Deutschen Winterraps durch Züchtung fast vollständig eliminiert. In einigen Zweigen der Industrie ist sie jedoch weiterhin ein bedeutender Rohstoff. In dieser Arbeit wird die Papierchromatographie als kostengünstige Methode zur Trennung von Fettsäuren vorgestellt, welche auch im Schulunterricht angewendet werden kann. Diese veraltete Methode wurde reaktiviert und für die vorliegenden Zwecke optimiert. Mit Hilfe der hier beschriebenen Papierchromatographie lassen sich sowohl Rapssamen auf ihren qualitativen Gehalt an Erucasäure untersuchen, als auch eine Vielzahl von ungesättigten Fettsäuren in Raps- und auch Leinsamen qualitativ nachweisen. Es ist so möglich erucasäurefreie und erucasäurehaltige Rapssamen auf dem Papier zu unterscheiden. Der Gehalt an Erucasäure, welcher von nur zwei additiv wirkenden Genen gesteuert wird, kann im Schulunterricht z.B. im Themenbereich „Errungenschaften der Pflanzenzüchtung“ als praktisches Beispiels herangezogen werden. Durch die hier beschriebene Methode können die Mendelschen Regeln anhand dieses phänotypischen Merkmals erarbeitet oder vertieft werden. Zudem ermöglicht die praktische Untersuchung von Erucasäure themenübergreifendes Arbeiten im Biologieunterricht, da sie klassische Genetik mit moderner Pflanzenzüchtung verbindet. KW - Erucasäure KW - Genetik KW - Fettsäure KW - Papierchromatographie KW - Brassica napus L. KW - Rapssamen KW - erucic acid KW - genetic KW - fatty acid KW - paper chromatography KW - Brassica napus L. KW - rape seed Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93341 ER - TY - JOUR A1 - Wannicke, Nicola A1 - Frindte, Katharina A1 - Gust, Giselher A1 - Liskow, Iris A1 - Wacker, Alexander A1 - Meyer, Andreas A1 - Grossart, Hans-Peter T1 - Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study JF - FEMS microbiology ecology N2 - In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 +/- 1.4 and 3.9 +/- 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 +/- 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 +/- 1.5 and 2.9 +/- 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump. KW - hydrostatic pressure KW - pressure chamber KW - piezophilic bacteria KW - deep-sea bacterial community KW - bacterial production KW - stable isotopes KW - membrane fatty acids Y1 - 2015 U6 - https://doi.org/10.1093/femsec/fiv036 SN - 0168-6496 SN - 1574-6941 VL - 91 IS - 5 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Engqvist, Martin K. M. A1 - Schmitz, Jessica A1 - Gertzmann, Anke A1 - Florian, Alexandra A1 - Jaspert, Nils A1 - Arif, Muhammad A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair A1 - Maurino, Veronica G. T1 - GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast L-Lactate Cytochrome c Oxidoreductase, Supports L-Lactate Oxidation in Roots of Arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In roots of Arabidopsis (Arabidopsis thaliana), L-lactate is generated by the reduction of pyruvate via L-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative L-lactate-metabolizing enzymes based on their homology to CYB2, the L-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses L-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than L-lactate. The key factor making GOX3 more efficient with L-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize L-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that L-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on L-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes L-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of L-lactate after its formation under normoxia. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.01003 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 2 SP - 1042 EP - 1061 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Wang, Ting A1 - Tohge, Takayuki A1 - Ivakov, Alexander A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair A1 - Mutwil, Marek A1 - Schippers, Jos H. M. A1 - Persson, Staffan T1 - Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Abiotic stresses, such as salinity, cause global yield loss of all major crop plants. Factors and mechanisms that can aid in plant breeding for salt stress tolerance are therefore of great importance for food and feed production. Here, we identified a MYB-like transcription factor, Salt-Related MYB1 (SRM1), that negatively affects Arabidopsis (Arabidopsis thaliana) seed germination under saline conditions by regulating the levels of the stress hormone abscisic acid (ABA). Accordingly, several ABA biosynthesis and signaling genes act directly downstream of SRM1, including SALT TOLERANT1/NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, RESPONSIVE TO DESICCATION26, and Arabidopsis NAC DOMAIN CONTAINING PROTEIN19. Furthermore, SRM1 impacts vegetative growth and leaf shape. We show that SRM1 is an important transcriptional regulator that directly targets ABA biosynthesis and signaling-related genes and therefore may be regarded as an important regulator of ABA-mediated salt stress tolerance. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.00962 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 2 SP - 1027 EP - + PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Alseekh, Saleh A1 - Tohge, Takayuki A1 - Wendenberg, Regina A1 - Scossa, Federico A1 - Omranian, Nooshin A1 - Li, Jie A1 - Kleessen, Sabrina A1 - Giavalisco, Patrick A1 - Pleban, Tzili A1 - Müller-Röber, Bernd A1 - Zamir, Dani A1 - Nikoloski, Zoran A1 - Fernie, Alisdair T1 - Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato JF - The plant cell N2 - A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary metabolism obtained from the same material and to other studies of natural variance of secondary metabolism. Y1 - 2015 U6 - https://doi.org/10.1105/tpc.114.132266 SN - 1040-4651 SN - 1532-298X VL - 27 IS - 3 SP - 485 EP - 512 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Klemm, Juliane A1 - Epp, Laura Saskia A1 - Tiedemann, Ralph T1 - Genetic data from algae sedimentary DNA reflect the influence of environment over geography JF - Scientific reports N2 - Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern. Y1 - 2015 U6 - https://doi.org/10.1038/srep12924 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Song Lang A1 - Bispo, Cláudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana N2 - The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 259 KW - comprehensive analysis KW - cytoplasmic polyadenylation KW - differential expression analysis KW - gene-expression KW - mammalian-cells KW - messenger-rna polyadenylation KW - poly(a)-binding protein KW - specificity factor KW - tail-length KW - translational control Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96400 SP - 1 EP - 30 ER - TY - JOUR A1 - Manning, Pete A1 - Gossner, Martin M. A1 - Bossdorf, Oliver A1 - Allan, Eric A1 - Zhang, Yuan-Ye A1 - Prati, Daniel A1 - Blüthgen, Nico A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra-Maria A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Müller, Jörg A1 - Pasalic, Esther A1 - Socher, Stephanie A. A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Weiner, Christiane A1 - Werner, Michael A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa JF - Ecology : a publication of the Ecological Society of America N2 - Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35% decrease in rand 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions. KW - Biodiversity indicators KW - correlation KW - fertilization KW - grassland management KW - grazing KW - land-use change KW - land-use intensity KW - mowing KW - multidiversity KW - multitrophic interactions Y1 - 2015 U6 - https://doi.org/10.1890/14-1307.1 SN - 0012-9658 SN - 1939-9170 VL - 96 IS - 6 SP - 1492 EP - 1501 PB - Wiley CY - Washington ER - TY - INPR A1 - Ensslin, Andreas A1 - Tschoepe, Okka A1 - Burkart, Michael A1 - Joshi, Jasmin Radha T1 - Fitness decline and adaptation to novel environments in ex situ plant collections: Current knowledge and future perspectives T2 - : an international journal N2 - The conservation of rare plant species as living collections in botanic gardens and arboreta has become an established tool in the battle against worldwide species' extinctions. However, the establishment of ex situ collections with a high conservation value requires a sound understanding of the evolutionary processes that may reduce the suitability of these collections for future reintroductions. Particularly, risks such as fitness decline of cultivated plants over time, trait shifts and loss of adaptation to the original habitat due to changes in selection regimes have rarely been addressed so far. Based on a literature review and results of our own project we show that genetic drift can lead to fitness decline in ex situ cultivated plants, but these drift effects strongly depend on the conditions and cultivation history in the ex situ facility. Furthermore, we provide evidence that shifts in traits such as germination and flowering time, and a decrease in stress tolerance to drought and competition can reduce the conservation value of ex situ collections. These threats associated with ex situ conditions require more attention by researchers, curators and conservationists. We need to increase knowledge on traits that are subject to novel selection pressures in ex situ collections, and to define population sizes that prevent genetic drift. Establishing conservation networks with replicated collections across gardens and balancing the seed contribution of mother plants to the next generation within a collection are suggested as first steps to increase the conservation value of ex situ plant collections. (C) 2015 Elsevier Ltd. All rights reserved. KW - Ex situ conservation KW - Botanic gardens KW - Artificial selection KW - Genetic drift KW - Adaptive evolution Y1 - 2015 U6 - https://doi.org/10.1016/j.biocon.2015.10.012 SN - 0006-3207 SN - 1873-2917 VL - 192 SP - 394 EP - 401 PB - Elsevier CY - Oxford ER - TY - THES A1 - Schmidt, Andreas T1 - Charakterisierung der Lipopolysaccharid-Bindungseigenschaften von Adhäsionsproteinen aus Salmonella-Bakteriophagen T1 - Characterization of lipopolysaccharide-binding properties of adhesion proteins from Salmonella-bacteriophages N2 - Die Interaktionen von komplexen Kohlenhydraten und Proteinen sind ubiquitär. Sie spielen wichtige Rollen in vielen physiologischen Prozessen wie Zelladhäsion, Signaltransduktion sowie bei viralen Infektionen. Die molekularen Grundlagen der Interaktion sind noch nicht komplett verstanden. Ein Modellsystem für Kohlenhydrat-Protein-Interaktionen besteht aus Adhäsionsproteinen (Tailspikes) von Bakteriophagen, die komplexe Kohlenhydrate auf bakteriellen Oberflächen (O-Antigen) erkennen. Das Tailspike-Protein (TSP), das in dieser Arbeit betrachtet wurde, stammt aus dem Bakteriophagen 9NA (9NATSP). 9NATSP weist eine hohe strukturelle Homologie zum gut charakterisierten TSP des Phagen P22 (P22TSP) auf, bei einer niedriger sequenzieller Ähnlichkeit. Die Substratspezifitäten beider Tailspikes sind ähnlich mit Ausnahme der Toleranz gegenüber den glucosylierten Formen des O-Antigens. Die Struktur der beiden Tailspikes ist bekannt, sodass sie ein geeignetes System für vergleichende Bindungsstudien darstellen, um die strukturellen Grundlagen für die Unterschiede der Spezifität zu untersuchen. Im Rahmen dieser Arbeit wurde der ELISA-like tailspike adsorption assay (ELITA) etabliert, um Binderpaare aus TSPs und O-Antigen zu identifizieren. Dabei wurden 9NATSP und P22TSP als Sonden eingesetzt, deren Bindung an die intakten, an die Mikrotiterplatte adsorbierten Bakterien getestet wurde. Beim Test einer Sammlung aus 44 Salmonella-Stämmen wurden Stämme identifiziert, die bindendes O-Antigen exprimieren. Gleichzeitig wurden Unterschiede in der Bindung der beiden TSPs an Salmonella-Stämme mit gleichem O-Serotyp beobachtet. Die Ergebnisse der ELITA-Messung wurden qualitativ durch eine FACS-basierte Bindungsmessung bestätigt. Zusätzlich ermöglichte die FACS-Messung bei Stämmen, die teilweise modifizierte O-Antigene herstellen, den Anteil an Zellen mit und ohne Modifikation zu erfassen. Die Oberflächenplasmonresonanz (SPR)-basierten Interaktionsmessungen wurden eingesetzt, um Bindungsaffinitäten für eine TSP-O-Antigen Kombination zu quantifizieren. Dafür wurden zwei Methoden getestet, um die Oligosaccharide auf einem SPR-Chip zu immobilisieren. Zum einen wurden die enzymatisch hergestellten O-Antigenfragmente mit einem bifunktionalen Oxaminadapter derivatisiert, der eine primäre Aminogruppe für die Immobilisierung bereitstellt. Ein Versuch, diese Oligosaccharidfragmente zu immobilisieren, war jedoch nicht erfolgreich. Dagegen wurde das nicht derivatisierte Polysaccharid, bestehend aus repetitivem O-Antigen und einem konservierten Kernsaccharid, erfolgreich auf einem SPR-Chip immobilisiert. Die Immobilisierung wurde durch Interaktionsmessungen mit P22TSP bestätigt. Durch die Immobilisierung des Polysaccharids sind somit quantitative SPR-Bindungsmessungen mit einem polydispersen Interaktionspartner möglich. Eine Auswahl von Salmonella-Stämmen mit einer ausgeprägt unterschiedlichen Bindung von 9NATSP und P22TSP im ELITA-Testsystem wurde hinsichtlich der Zusammensetzung des O-Antigens mittels HPLC, Kapillargelelektrophorese und MALDI-MS analysiert. Dabei wurden nicht-stöchiometrische Modifikationen der O-Antigene wie Acetylierung und Glucosylierung detektiert. Das Ausmaß der Glucosylierung korrelierte negativ mit der Effizienz der Bindung und des Verdaus durch die beiden TSPs, wobei der negative Effekt bei 9NATSP weniger stark ausgeprägt war als bei P22TSP. Dies stimmt mit den Literaturdaten zu Infektivitätsstudien mit 9NA und P22 überein, die mit Stämmen mit vergleichbaren O-Antigenvarianten durchgeführt wurden. Die Korrelation zwischen der Glucosylierung und Bindungseffizienz konnte strukturell interpretiert werden. Auf Grundlage der O-Antigenanalysen sowie der Ergebnisse der ELITA- und FACS-Bindungstests wurden die Salmonella-Stämme Brancaster und Kalamu identifiziert, die annähernd quantitativ glucosyliertes O-Antigen exprimieren. Damit eignen sich diese Stämme für weiterführende Studien, um die Zusammenhänge zwischen der Spezifität und der Organisation der Bindestellen der beiden TSPs zu untersuchen. N2 - Interactions between complex carbohydrates and proteins are ubiquitous. They play a major role in plenty of physiological processes as cell adhesion, signal transduction, as well as viral infections. The molecular details of the interaction are not completely understood. A model system for protein-carbohydrate interactions consists of adhesion proteins (Tailspikes) of bacteriophages, which recognize complex carbohydrates on the bacterial surface (O-antigen). A Tailspike primary used in this work originates from the bacteriophage 9NA (9NATSP). 9NATSP shows a remarkable structural similarity to the extensively studied TSP of the bacteriophage P22 (P22TSP), showing a low sequential similarity. Since structures of both TSP's are known, they provide an appropriate system for comparative interaction studies. An ELISA-like Tailspike-adsorbtion assay (ELITA) was established in this work which allows identification of binding pairs consisting of TSP's and O-antigens. In this approach 9NATSP and P22TSP were used as probes. Their binding to intact bacteria adsorbed to a multi-well plate was tested. In a collection of 44 Salmonella-strains a set of strains was identified which express a binding O-antigen. Additionally different binding efficiencies were observed among the strains of the same O-serotype. Binding data of the ELITA were qualitatively resembled in a FACS-based binding test. Additionally FACS-measurements allowed estimation of the extent of non-stoichiometric modifications of the O-antigens in strains expressing modified O-antigen variants. The surface plasmone resonance (SPR) interaction-measurements were used to quantify affinities of TSP-O-antigen binding. For this, two carbohydrate immobilization strategies were tested. An O-antigen fragment, produced by enzymatic digestion, was derivatized by a bi-functional Oxamine-spacer. The spacer provides a primary amine-functionality for the immobilization. Despite the successful derivatization, sufficient amount of the O-antigen fragment could not be immobilized. Oppositely, the non-derivatized whole polysaccharide was successfully immobilized. The immobilization was confirmed by SPR-measurements with P22TSP. This approach allows quantitative measurements with polysaccharide as ligand, despite of its polydisperse characteristics. A set of Salmonella-strains with a distinctively different binding to 9NATSP and P22TSP in ELITA were characterized in terms of the content of their O-antigen by HPLC, capillary gel electrophoresis and MALDI-MS. Non-stoichiometric modifications of the O-antigens as acetylation and glucosylation were identified. The extent of glucosylation correlated negatively with the binding efficiencies to both TSP's, identifying 9NATSP as more susceptible to the glucosylation. That finding resembles with published data from early studies on the infectivity of bacteriophages 9NA and P22. Observed data could be interpreted in a structural context. The results of the O-antigen analysis as well as the results of ELITA and FACS-based interaction tests two Salmonella-strains, were identified, which produce almost completely glucosylated O-antigen: Salmonella Brancaster and Salmonella Kalamu. These strains are suitable for further studies to investigate the interdependence of the specificity and the structure of the binding sites of both TSP's. KW - Lipopolysaccharid KW - O-Antigen KW - nicht-stöchiometrische Modifikationen KW - Glycosylierung KW - Bakteriophagen KW - Adhäsionsproteine KW - Tailspike KW - Protein-Kohlenhydrat Interaktionen KW - lipopolysaccharide KW - O-antigen KW - non-stoichiometric modifications KW - glycosylation KW - bacteriophages KW - adhesion proteins KW - Tailspikes KW - protein-carbohydrate interactions Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-79529 ER - TY - JOUR A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Son Lang A1 - Bispo, Cláudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. KW - messenger-rna polyadenylation KW - differential expression analysis KW - gene-expression KW - tail-length KW - cytoplasmic polyadenylation KW - poly(a)-binding protein KW - translational control KW - comprehensive analysis KW - specificity factor KW - mammalian-cells Y1 - 2015 U6 - https://doi.org/10.1371/journal.pgen.1005474 SN - 1553-7390 SN - 1553-7404 VL - 11 IS - 8 PB - Public Library of Science CY - San Francisco ER - TY - GEN A1 - Hartmann, Stefanie A1 - Hasenkamp, Natascha A1 - Mayer, Jens A1 - Michaux, Johan A1 - Morand, Serge A1 - Mazzoni, Camila J. A1 - Roca, Alfred L. A1 - Greenwood, Alex D. T1 - Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. Results: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. Conclusions: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1329 KW - murine leukemia virus KW - endogenous retrovirus KW - Xpr1 KW - XMRV KW - genomic evolution KW - Markov cluster algorithm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431200 SN - 1866-8372 IS - 1329 ER - TY - JOUR A1 - Garcia, Sarahi L. A1 - Buck, Moritz A1 - McMahon, Katherine D. A1 - Grossart, Hans-Peter A1 - Eiler, Alexander A1 - Warnecke, Falk T1 - Auxotrophy and intrapopulation complementary in the "interactome' of a cultivated freshwater model community JF - Molecular ecology N2 - Microorganisms are usually studied either in highly complex natural communities or in isolation as monoclonal model populations that we manage to grow in the laboratory. Here, we uncover the biology of some of the most common and yet-uncultured bacteria in freshwater environments using a mixed culture from Lake Grosse Fuchskuhle. From a single shotgun metagenome of a freshwater mixed culture of low complexity, we recovered four high-quality metagenome-assembled genomes (MAGs) for metabolic reconstruction. This analysis revealed the metabolic interconnectedness and niche partitioning of these naturally dominant bacteria. In particular, vitamin- and amino acid biosynthetic pathways were distributed unequally with a member of Crenarchaeota most likely being the sole producer of vitamin B12 in the mixed culture. Using coverage-based partitioning of the genes recovered from a single MAG intrapopulation metabolic complementarity was revealed pointing to social' interactions for the common good of populations dominating freshwater plankton. As such, our MAGs highlight the power of mixed cultures to extract naturally occurring interactomes' and to overcome our inability to isolate and grow the microbes dominating in nature. KW - community KW - cultures KW - interactions KW - metagenomics KW - populations Y1 - 2015 U6 - https://doi.org/10.1111/mec.13319 SN - 0962-1083 SN - 1365-294X VL - 24 IS - 17 SP - 4449 EP - 4459 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Dubovskaya, Olga P. A1 - Tang, Kam W. A1 - Gladyshev, Michail I. A1 - Kirillin, Georgiy A1 - Buseva, Zhanna A1 - Kasprzak, Peter A1 - Tolomeev, Aleksandr P. A1 - Grossart, Hans-Peter T1 - Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check JF - PLoS one N2 - Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0131431 SN - 1932-6203 VL - 10 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Glud, Ronnie N. A1 - Grossart, Hans-Peter A1 - Larsen, Morten A1 - Tang, Kam W. A1 - Arendt, Kristine E. A1 - Rysgaard, Soren A1 - Thamdrup, Bo A1 - Gissel Nielsen, Torkel T1 - Copepod carcasses as microbial hot spots for pelagic denitrification JF - Limnology and oceanography N2 - Copepods are exposed to a high non-predatory mortality and their decomposing carcasses act as microniches with intensified microbial activity. Sinking carcasses could thereby represent anoxic microenvironment sustaining anaerobic microbial pathways in otherwise oxic water columns. Using non-invasive O-2 imaging, we document that carcasses of Calanus finmarchicus had an anoxic interior even at fully air-saturated ambient O-2 level. The extent of anoxia gradually expanded with decreasing ambient O-2 levels. Concurrent microbial sampling showed the expression of nitrite reductase genes (nirS) in all investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in (15)NO3-amended seawater demonstrated denitrification, of which on average 34%+/- 17% (n=28) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on the ambient O-2 levels. While denitrification was present even at air-saturation (302 mol L-1), the average carcass specific activity increased several orders of magnitude to approximate to 1 nmol d(-1) at 20% air-saturation (55 mol O-2 L-1) at an ambient temperature of 7 degrees C. Sinking carcasses of C. finmarchicus therefore represent hotspots of pelagic denitrification, but the quantitative importance as a sink for bioavailable nitrogen is strongly dependent on the ambient O-2 level. The importance of carcass associated denitrification could be highly significant in O-2 depleted environments such as Oxygen Minimum Zones (OMZ). Y1 - 2015 U6 - https://doi.org/10.1002/lno.10149 SN - 0024-3590 SN - 1939-5590 VL - 60 IS - 6 SP - 2026 EP - 2036 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bizic-Ionescu, Mina A1 - Zeder, Michael A1 - Ionescu, Danny A1 - Orlic, Sandi A1 - Fuchs, Bernhard M. A1 - Grossart, Hans-Peter A1 - Amann, Rudolf T1 - Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization JF - Environmental microbiology N2 - Marine and limnic particles are hotspots of organic matter mineralization significantly affecting biogeochemical element cycling. Fluorescence in-situ hybridization and pyrosequencing of 16S rRNA genes were combined to investigate bacterial diversity and community composition on limnic and coastal marine particles >5 and >10m respectively. Limnic particles were more abundant (average: 1x10(7)l(-1)), smaller in size (average areas: 471 versus 2050m(2)) and more densely colonized (average densities: 7.3 versus 3.6 cells 100m(-2)) than marine ones. Limnic particle-associated (PA) bacteria harboured Alphaproteobacteria and Betaproteobacteria, and unlike previously suggested sizeable populations of Gammaproteobacteria, Actinobacteria and Bacteroidetes. Marine particles were colonized by Planctomycetes and Betaproteobacteria additionally to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. Large differences in individual particle colonization could be detected. High-throughput sequencing revealed a significant overlap of PA and free-living (FL) bacteria highlighting an underestimated connectivity between both fractions. PA bacteria were in 14/21 cases more diverse than FL bacteria, reflecting a high heterogeneity in the particle microenvironment. We propose that a ratio of Chao 1 indices of PA/FL<1 indicates the presence of rather homogeneously colonized particles. The identification of different bacterial families enriched on either limnic or marine particles demonstrates that, despite the seemingly similar ecological niches, PA communities of both environments differ substantially. Y1 - 2015 U6 - https://doi.org/10.1111/1462-2920.12466 SN - 1462-2912 SN - 1462-2920 VL - 17 IS - 10 SP - 3500 EP - 3514 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Pieck, Angelika A1 - Herlemann, Daniel P. P. A1 - Juergens, Klaus A1 - Grossart, Hans-Peter T1 - Particle-Associated Differ from Free-Living Bacteria in Surface Waters of the Baltic Sea JF - Frontiers in microbiology N2 - Many studies on bacterial community composition (BCC) do not distinguish between particle associated (PA) and free-living (FL) bacteria or neglect the PA fraction by pre-filtration removing most particles. Although temporal and spatial gradients in environmental variables are known to shape BCC, it remains unclear how and to what extent PA and FL bacterial diversity responds to such environmental changes. To elucidate the BCC of both bacterial fractions related to different environmental settings, we studied surface samples of three Baltic Sea stations (marine, mesohaline, and oligohaline) in two different seasons (summer and fall/winter). Amplicon sequencing of the 16S rRNA gene revealed significant differences in BCC of both bacterial fractions among stations and seasons, with a particularly high number of PA operational taxonomic units (OTUs at genus-level) at the marine station in both seasons. "Shannon and Simpson indices" showed a higher diversity of PA than FL bacteria at the marine station in both seasons and at the oligohaline station in fall/winter. In general, a high fraction of bacterial OTUs was found exclusively in the PA fraction (52% of total OTUs). These findings indicate that PA bacteria significantly contribute to overall bacterial richness and that they differ from FL bacteria. Therefore, to gain a deeper understanding on diversity and dynamics of aquatic bacteria, PA and FL bacteria should be generally studied independently. KW - microbial communities KW - microbial diversity KW - particle-associated and free-living bacteria KW - Baltic Sea KW - salinity gradient KW - seasons KW - 454-pyrosequencing Y1 - 2015 U6 - https://doi.org/10.3389/fmicb.2015.01297 SN - 1664-302X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Frindte, Katharina A1 - Allgaier, Martin A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Microbial response to experimentally controlled redox transitions at the sediment water interface JF - PLoS one N2 - The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0143428 SN - 1932-6203 VL - 10 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Attermeyer, Katrin A1 - Tittel, Joerg A1 - Allgaier, Martin A1 - Frindte, Katharina A1 - Wurzbacher, Christian A1 - Hilt, Sabine A1 - Kamjunke, Norbert A1 - Grossart, Hans-Peter T1 - Effects of Light and Autochthonous Carbon Additions on Microbial Turnover of Allochthonous Organic Carbon and Community Composition JF - Microbial ecology N2 - The fate of allochthonous dissolved organic carbon (DOC) in aquatic systems is primarily controlled by the turnover of heterotrophic bacteria. However, the roles that abiotic and biotic factors such as light and DOC release by aquatic primary producers play in the microbial decomposition of allochthonous DOC is not well understood. We therefore tested if light and autochthonous DOC additions would increase allochthonous DOC decomposition rates and change bacterial growth efficiencies and community composition (BCC). We established continuous growth cultures with different inocula of natural bacterial communities and alder leaf leachates (DOCleaf) with and without light exposure before amendment. Furthermore, we incubated DOCleaf together with autochthonous DOC from lysed phytoplankton cultures (DOCphyto). Our results revealed that pretreatments of DOCleaf with light resulted in a doubling of bacterial growth efficiency (BGE), whereas additions of DOCphyto or combined additions of DOCphyto and light had no effect on BGE. The change in BGE was not accompanied by shifts in the phylogenetic structure of the BCC, but BCC was influenced by the DOC source. Our results highlight that a doubling of BGE is not necessarily accompanied by a shift in BCC and that BCC is more strongly affected by resource properties. KW - Bacterial growth efficiency KW - Continuous cultures KW - Carbon decomposition KW - Leaf litter KW - Photolysis Y1 - 2015 U6 - https://doi.org/10.1007/s00248-014-0549-4 SN - 0095-3628 SN - 1432-184X VL - 69 IS - 2 SP - 361 EP - 371 PB - Springer CY - New York ER - TY - JOUR A1 - Corno, Gianluca A1 - Salka, Ivette A1 - Pohlmann, Kirsten A1 - Hall, Alex R. A1 - Grossart, Hans-Peter T1 - Interspecific interactions drive chitin and cellulose degradation by aquatic microorganisms JF - Aquatic microbial ecology : international journal N2 - Complex biopolymers (BPs) such as chitin and cellulose provide the majority of organic carbon in aquatic ecosystems, but the mechanisms by which communities of bacteria in natural systems exploit them are unclear. Previous degradation experiments in artificial systems predominantly used microcosms containing a single bacterial species, neglecting effects of interspecific interactions. By constructing simplified aquatic microbial communities, we tested how the addition of other bacterial species, of a nanoflagellate protist capable of consuming bacteria, or of both, affect utilization of BPs. Surprisingly, total abundance of resident bacteria in mixed communities increased upon addition of the protist. Concomitantly, bacteria shifted from free-living to aggregated morphotypes that seemed to promote utilization of BPs. In our model system, these interactions significantly increased productivity in terms of overall bacterial numbers and carbon transfer efficiency. This indicates that interactions on microbial aggregates may be crucial for chitin and cellulose degradation. We therefore suggest that interspecific microbial interactions must be considered when attempting to model the turnover of the vast pool of complex biopolymers in aquatic ecosystems. KW - Aggregation KW - Flagellate grazing KW - Ecological interactions KW - Microbial carbon transfer KW - Polymer degradation KW - System ecology Y1 - 2015 U6 - https://doi.org/10.3354/ame01765 SN - 0948-3055 SN - 1616-1564 VL - 76 IS - 1 SP - 27 EP - + PB - Institute of Mathematical Statistics CY - Oldendorf Luhe ER - TY - JOUR A1 - Ishida, Seiji A1 - Nozaki, Daiki A1 - Grossart, Hans-Peter A1 - Kagami, Maiko T1 - Novel basal, fungal lineages from freshwater phytoplankton and lake samples JF - Environmental microbiology reports N2 - Zoosporic fungal parasites are known to control the extent and development of blooms of numerous phytoplankton species. Despite the obvious importance of ecological interactions between parasitic fungi and their phytoplanktonic hosts, their diversity remains largely unknown due to methodological limitations. Here, a method to genetically analyse fungi directly from single, infected colonies of the phytoplanktonic host was applied to field samples of large diatom species from mesotrophic Lake Biwa and eutrophic Lake Inba, Japan. Although previous research on interaction between lacustrine fungi and large phytoplankton has mainly focused on the role of parasitic Chytridiomycota, our results revealed that fungi attached to large diatoms included not only members of Chytridiomycota, but also members of Aphelida, Cryptomycota and yeast. The fungi belonging to Chytridiomycota and Aphelida form novel, basal lineages. Environmental clone libraries also support the occurrence of these lineages in Japanese lakes. The presented method enables us to better characterize individual fungal specimens on phytoplankton, and thus facilitate and improve the investigation of ecological relationships between fungi and phytoplankton in aquatic ecosystems. Y1 - 2015 U6 - https://doi.org/10.1111/1758-2229.12268 SN - 1758-2229 VL - 7 IS - 3 SP - 435 EP - 441 PB - Wiley-Blackwell CY - Hoboken ER - TY - INPR A1 - Chattopadhyay, Madhab K. A1 - Chakraborty, Ranadhir A1 - Grossart, Hans-Peter A1 - Reddy, Gundlapally S. A1 - Jagannadham, Medicharla V. T1 - Antibiotic resistance of bacteria T2 - BioMed research international Y1 - 2015 U6 - https://doi.org/10.1155/2015/501658 SN - 2314-6133 SN - 2314-6141 PB - Hindawi Publishing Corp. CY - New York ER - TY - JOUR A1 - Ionescu, Danny A1 - Bizic-Ionescu, Mina A1 - Khalili, Arzhang A1 - Malekmohammadi, Reza A1 - Morad, Reza Mohammad A1 - de Beer, Dirk A1 - Grossart, Hans-Peter T1 - A new tool for long-term studies of POM-bacteria interactions: overcoming the century-old Bottle Effect JF - Scientific reports N2 - Downward fluxes of particulate organic matter (POM) are the major process for sequestering atmospheric CO2 into aquatic sediments for thousands of years. Budget calculations of the biological carbon pump are heavily based on the ratio between carbon export (sedimentation) and remineralization (release to the atmosphere). Current methodologies determine microbial dynamics on POM using closed vessels, which are strongly biased towards heterotrophy due to rapidly changing water chemistry (Bottle Effect). We developed a flow-through rolling tank for long term studies that continuously maintains POM at near in-situ conditions. There, bacterial communities resembled in-situ communities and greatly differed from those in the closed systems. The active particle-associated community in the flow-through system was stable for days, contrary to hours previously reported for closed incubations. In contrast to enhanced respiration rates, the decrease in photosynthetic rates on particles throughout the incubation was much slower in our system than in traditional ones. These results call for reevaluating experimentally-derived carbon fluxes estimated using traditional methods. Y1 - 2015 U6 - https://doi.org/10.1038/srep14706 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Geissler, Peter A1 - Poyarkov, Nikolay A. A1 - Grismer, Lee A1 - Nguyen, Truong Q. A1 - An, Hang T. A1 - Neang, Thy A1 - Kupfer, Alexander A1 - Ziegler, Thomas A1 - Böhme, Wolfgang A1 - Müller, Hendrik T1 - New Ichthyophis species from Indochina (Gymnophiona, Ichthyophiidae): 1. The unstriped forms with descriptions of three new species and the redescriptions of I-acuminatus Taylor, 1960, I-youngorum Taylor, 1960 and I-laosensis Taylor, 1969 JF - Organisms, diversity & evolution : official journal of the Gesellschaft für Biologische Systematik N2 - Caecilians of the genus Ichthyophis Fitzinger, 1826 are among the most poorly known amphibian taxa within Southeast Asia. Populations of Ichthyophis from the Indochina region (comprising Cambodia, Laos, and Vietnam) have been assigned to five taxa: Ichthyophis acuminatus, Ichthyophis bannanicus, Ichthyophis kohtaoensis, Ichthyophis laosensis, and Ichthyophis nguyenorum. Barcoding of recently collected specimens indicates that Indochinese congeners form a clade that includes several morphologically and genetically distinct but yet undescribed species. Although body coloration is supported by the molecular analyses as a diagnostic character at species level, unstriped forms are paraphyletic with respect to striped Ichthyophis. Based on our morphological and molecular analyses, three distinct unstriped ichthyophiid species, Ichthyophis cardamomensis sp. nov. from western Cambodia, Ichthyophis catlocensis sp. nov. from southern Vietnam, and Ichthyophis chaloensis sp. nov. from central Vietnam are described as new herein, almost doubling the number of Ichthyophis species known from the Indochinese region. All three new species differ from their unstriped congeners in a combination of morphological and molecular traits. In addition, redescriptions of three unstriped Ichthyophis species (Ichthyophis acuminatus, I. laosensis, I. youngorum) from Indochina and adjacent Thailand are provided. KW - Biogeography KW - Caecilians KW - Indochina KW - Cambodia KW - Laos KW - Thailand KW - Vietnam KW - mtDNA KW - Barcoding KW - COI KW - cyt b KW - Phylogeny KW - Integrative taxonomy Y1 - 2015 U6 - https://doi.org/10.1007/s13127-014-0190-6 SN - 1439-6092 SN - 1618-1077 VL - 15 IS - 1 SP - 143 EP - 174 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Hartmann, Stefanie A1 - Hasenkamp, Natascha A1 - Mayer, Jens A1 - Michaux, Johan A1 - Morand, Serge A1 - Mazzoni, Camila J. A1 - Roca, Alfred L. A1 - Greenwood, Alex D. T1 - Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse JF - BMC genomics N2 - Background: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. Results: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. Conclusions: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection. KW - Murine leukemia virus KW - Endogenous retrovirus KW - Xpr1 KW - XMRV KW - Genomic evolution KW - Markov cluster algorithm Y1 - 2015 U6 - https://doi.org/10.1186/s12864-015-1766-z SN - 1471-2164 VL - 16 PB - BioMed Central CY - London ER - TY - JOUR A1 - Sicard, Adrien A1 - Kappel, Christian A1 - Josephs, Emily B. A1 - Wha Lee, Young A1 - Marona, Cindy A1 - Stinchcombe, John R. A1 - Wright, Stephen I. A1 - Lenhard, Michael T1 - Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella JF - Nature Communications N2 - In the Bateson–Dobzhansky–Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. Y1 - 2015 U6 - https://doi.org/10.1038/ncomms8960 SN - 2041-1723 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Kappel, Christian A1 - Trost, Gerda A1 - Czesnick, Hjördis A1 - Ramming, Anna A1 - Kolbe, Benjamin A1 - Vi, Son Lang A1 - Bispo, Claudia A1 - Becker, Jörg D. A1 - de Moor, Cornelia A1 - Lenhard, Michael T1 - Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - The poly(A) tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pgen.1005474 SN - 1553-7390 SN - 1553-7404 VL - 11 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Zhang, Houbin A1 - Hanke-Gogokhia, Christin A1 - Jiang, Li A1 - Li, Xiaobo A1 - Wang, Pu A1 - Gerstner, Cecilia D. A1 - Frederick, Jeanne M. A1 - Yang, Zhenglin A1 - Baehr, Wolfgang T1 - Mistrafficking of prenylated proteins causes retinitis pigmentosa 2 JF - The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology N2 - The retinitis pigmentosa 2 polypeptide (RP2) functions as a GTPase-activating protein (GAP) for ARL3 (Arf-like protein 3), a small GTPase. ARL3 is an effector of phosphodiesterase 6 Delta (PDE6D), a prenyl-binding protein and chaperone of prenylated protein in photoreceptors. Mutations in the human RP2 gene cause X-linked retinitis pigmentosa (XLRP) and cone-rod dystrophy (XL-CORD). To study mechanisms causing XLRP, we generated an RP2 knockout mouse. The RP2h(-/-) mice exhibited a slowly progressing rod-cone dystrophy simulating the human disease. RP2h(-/-) scotopic a-wave and photopic b-wave amplitudes declined at 1 mo of age and continued to decline over the next 6 mo. Prenylated PDE6 subunits and G-protein coupled receptor kinase 1 (GRK1) were unable to traffic effectively to the RP2h(-/-) outer segments. Mechanistically, absence of RP2 GAP activity increases ARL3-GTP levels, forcing PDE6D to assume a predominantly "closed" conformation that impedes binding of lipids. Lack of interaction disrupts trafficking of PDE6 and GRK1 to their destination, the photoreceptor outer segments. We propose that hyperactivity of ARL3-GTP in RP2 knockout mice and human patients with RP2 null alleles leads to XLRP resembling recessive rod-cone dystrophy. KW - rod-cone dystrophy KW - ARL3 KW - PDE6D KW - RP2 KW - XLRP Y1 - 2015 U6 - https://doi.org/10.1096/fj.14-257915 SN - 0892-6638 SN - 1530-6860 VL - 29 IS - 3 SP - 932 EP - 942 PB - Federation of American Societies for Experimental Biology CY - Bethesda ER - TY - JOUR A1 - Nowak, Michael D. A1 - Russo, Giancarlo A1 - Schlapbach, Ralph A1 - Cuong Nguyen Huu, A1 - Lenhard, Michael A1 - Conti, Elena T1 - The draft genome of Primula veris yields insights into the molecular basis of heterostyly JF - Genome biology : biology for the post-genomic era N2 - Background: The flowering plant Primula veris is a common spring blooming perennial that is widely cultivated throughout Europe. This species is an established model system in the study of the genetics, evolution, and ecology of heterostylous floral polymorphisms. Despite the long history of research focused on this and related species, the continued development of this system has been restricted due the absence of genomic and transcriptomic resources. Results: We present here a de novo draft genome assembly of P. veris covering 301.8 Mb, or approximately 63% of the estimated 479.22 Mb genome, with an N50 contig size of 9.5 Kb, an N50 scaffold size of 164 Kb, and containing an estimated 19,507 genes. The results of a RADseq bulk segregant analysis allow for the confident identification of four genome scaffolds that are linked to the P. veris S-locus. RNAseq data from both P. veris and the closely related species P. vulgaris allow for the characterization of 113 candidate heterostyly genes that show significant floral morph-specific differential expression. One candidate gene of particular interest is a duplicated GLOBOSA homolog that may be unique to Primula (PveGLO2), and is completely silenced in L-morph flowers. Conclusions: The P. veris genome represents the first genome assembled from a heterostylous species, and thus provides an immensely important resource for future studies focused on the evolution and genetic dissection of heterostyly. As the first genome assembled from the Primulaceae, the P. veris genome will also facilitate the expanded application of phylogenomic methods in this diverse family and the eudicots as a whole. Y1 - 2015 U6 - https://doi.org/10.1186/s13059-014-0567-z SN - 1465-6906 SN - 1474-760X VL - 16 PB - BioMed Central CY - London ER - TY - JOUR A1 - Johnson, Kim L. A1 - Ramm, Sascha A1 - Kappel, Christian A1 - Ward, Sally A1 - Leyser, Ottoline A1 - Sakamoto, Tomoaki A1 - Kurata, Tetsuya A1 - Bevan, Michael W. A1 - Lenhard, Michael T1 - The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis JF - PLoS one N2 - Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0131103 SN - 1932-6203 VL - 10 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Sicard, Adrien A1 - Kappel, Christian A1 - Josephs, Emily B. A1 - Lee, Young Wha A1 - Marona, Cindy A1 - Stinchcombe, John R. A1 - Wright, Stephen I. A1 - Lenhard, Michael T1 - Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella JF - Nature Communications N2 - In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. Y1 - 2015 U6 - https://doi.org/10.1038/ncomms8960 SN - 2041-1723 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Czesnick, Hjördis A1 - Lenhard, Michael T1 - Size Control in Plants-Lessons from Leaves and Flowers JF - Cold Spring Harbor perspectives in biology N2 - To achieve optimal functionality, plant organs like leaves and petals have to grow to a certain size. Beginning with a limited number of undifferentiated cells, the final size of an organ is attained by a complex interplay of cell proliferation and subsequent cell expansion. Regulatory mechanisms that integrate intrinsic growth signals and environmental cues are required to enable optimal leaf and flower development. This review focuses on plant-specific principles of growth reaching from the cellular to the organ level. The currently known genetic pathways underlying these principles are summarized and network connections are highlighted. Putative non-cell autonomously acting mechanisms that might coordinate plant-cell growth are discussed. Y1 - 2015 U6 - https://doi.org/10.1101/cshperspect.a019190 SN - 1943-0264 VL - 7 IS - 8 PB - Cold Spring Harbor Laboratory Press CY - Cold Spring Harbor, NY ER - TY - THES A1 - Alseekh, Saleh T1 - Identification and mode of inheritance of quantitative trait loci (QTL) for metabolite abundance in tomato Y1 - 2015 ER - TY - JOUR A1 - Lotkowska, Magda E. A1 - Tohge, Takayuki A1 - Fernie, Alisdair A1 - Xue, Gang-Ping A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up-and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C) CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.00605 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 3 SP - 1862 EP - 1880 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Fettke, Jörg A1 - Fernie, Alisdair T1 - Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism JF - Trends in plant science N2 - In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances. Y1 - 2015 U6 - https://doi.org/10.1016/j.tplants.2015.04.012 SN - 1360-1385 VL - 20 IS - 8 SP - 490 EP - 497 PB - Elsevier CY - London ER - TY - JOUR A1 - Omranian, Nooshin A1 - Kleessen, Sabrina A1 - Tohge, Takayuki A1 - Klie, Sebastian A1 - Basler, Georg A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair A1 - Nikoloski, Zoran T1 - Differential metabolic and coexpression networks of plant metabolism JF - Trends in plant science N2 - Recent analyses have demonstrated that plant metabolic networks do not differ in their structural properties and that genes involved in basic metabolic processes show smaller coexpression than genes involved in specialized metabolism. By contrast, our analysis reveals differences in the structure of plant metabolic networks and patterns of coexpression for genes in (non)specialized metabolism. Here we caution that conclusions concerning the organization of plant metabolism based on network-driven analyses strongly depend on the computational approaches used. KW - plant specialized metabolism KW - metabolic networks KW - gene coexpression KW - differential network analysis Y1 - 2015 U6 - https://doi.org/10.1016/j.tplants.2015.02.002 SN - 1360-1385 VL - 20 IS - 5 SP - 266 EP - 268 PB - Elsevier CY - London ER -