TY - JOUR A1 - Baberowski, David A1 - Leonhardt, Thiemo A1 - Rentsch, Susanne A1 - Bergner, Nadine T1 - Aufbau informatischer Kompetenzen im Kontext KI bei Lehramtsstudierenden des Faches Politik JF - Hochschuldidaktik Informatik HDI 2021 (Commentarii informaticae didacticae) N2 - Lehrkräfte aller Fächer benötigen informatische Kompetenzen, um der wachsenden Alltagsrelevanz von Informatik und aktuell gültigen Lehrplänen gerecht zu werden. Beispielsweise verweist in Sachsen der Lehrplan für das Fach Gemeinschaftskunde, Rechtserziehung und Wirtschaft am Gymnasium mit dem für die Jahrgangsstufe 11 vorgesehenem Thema „Digitalisierung und sozialer Wandel“ auf Künstliche Intelligenz (KI) und explizit auf die Bedeutung der informatischen Bildung. Um die nötigen informatischen Grundlagen zu vermitteln, wurde für Lehramtsstudierende des Faches Politik ein Workshop erarbeitet, der die Grundlagen der Funktionsweise von KI anhand von überwachtem maschinellen Lernen in neuronalen Netzen vermittelt. Inhalt des Workshops ist es, mit Bezug auf gesellschaftliche Implikationen wie Datenschutz bei Trainingsdaten und algorithmic bias einen informierten Diskurs zu politischen Themen zu ermöglichen. Ziele des Workshops für Lehramtsstudierende mit dem Fach Politik sind: (1) Aufbau informatischer Kompetenzen in Bezug zum Thema KI, (2) Stärkung der Diskussionsfähigkeiten der Studierenden durch passende informatische Kompetenzen und (3) Anregung der Studierenden zum Transfer auf passende Themenstellungen im Politikunterricht. Das Evaluationskonzept umfasst eine Pre-Post-Befragung zur Zuversicht zur Vermittlungskompetenz unter Bezug auf maschinelles Lernen in neuronalen Netzen im Unterricht, sowie die Analyse einer abschließenden Diskussion. Für die Pre-Post-Befragung konnte eine Steigerung der Zuversicht zur Vermittlungskompetenz beobachtet werden. Die Analyse der Diskussion zeigte das Bewusstsein der Alltagsrelevanz des Themas KI bei den Teilnehmenden, aber noch keine Anwendung der informatischen Inhalte des Workshops zur Stützung der Argumente in der Diskussion. KW - informatische Grundkompetenzen KW - Lehramtsstudium KW - KI KW - maschinelles Lernen KW - fächerverbindend Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-615995 SN - 978-3-86956-548-4 SN - 1868-0844 SN - 2191-1940 IS - 13 SP - 189 EP - 209 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Smirnov, Artem T1 - Understanding the dynamics of the near-earth space environment utilizing long-term satellite observations T1 - Verständnis der Dynamik der erdnahen Weltraumumgebung mit Hilfe von Langzeit-Satellitenbeobachtungen N2 - The near-Earth space environment is a highly complex system comprised of several regions and particle populations hazardous to satellite operations. The trapped particles in the radiation belts and ring current can cause significant damage to satellites during space weather events, due to deep dielectric and surface charging. Closer to Earth is another important region, the ionosphere, which delays the propagation of radio signals and can adversely affect navigation and positioning. In response to fluctuations in solar and geomagnetic activity, both the inner-magnetospheric and ionospheric populations can undergo drastic and sudden changes within minutes to hours, which creates a challenge for predicting their behavior. Given the increasing reliance of our society on satellite technology, improving our understanding and modeling of these populations is a matter of paramount importance. In recent years, numerous spacecraft have been launched to study the dynamics of particle populations in the near-Earth space, transforming it into a data-rich environment. To extract valuable insights from the abundance of available observations, it is crucial to employ advanced modeling techniques, and machine learning methods are among the most powerful approaches available. This dissertation employs long-term satellite observations to analyze the processes that drive particle dynamics, and builds interdisciplinary links between space physics and machine learning by developing new state-of-the-art models of the inner-magnetospheric and ionospheric particle dynamics. The first aim of this thesis is to investigate the behavior of electrons in Earth's radiation belts and ring current. Using ~18 years of electron flux observations from the Global Positioning System (GPS), we developed the first machine learning model of hundreds-of-keV electron flux at Medium Earth Orbit (MEO) that is driven solely by solar wind and geomagnetic indices and does not require auxiliary flux measurements as inputs. We then proceeded to analyze the directional distributions of electrons, and for the first time, used Fourier sine series to fit electron pitch angle distributions (PADs) in Earth's inner magnetosphere. We performed a superposed epoch analysis of 129 geomagnetic storms during the Van Allen Probes era and demonstrated that electron PADs have a strong energy-dependent response to geomagnetic activity. Additionally, we showed that the solar wind dynamic pressure could be used as a good predictor of the PAD dynamics. Using the observed dependencies, we created the first PAD model with a continuous dependence on L, magnetic local time (MLT) and activity, and developed two techniques to reconstruct near-equatorial electron flux observations from low-PA data using this model. The second objective of this thesis is to develop a novel model of the topside ionosphere. To achieve this goal, we collected observations from five of the most widely used ionospheric missions and intercalibrated these data sets. This allowed us to use these data jointly for model development, validation, and comparison with other existing empirical models. We demonstrated, for the first time, that ion density observations by Swarm Langmuir Probes exhibit overestimation (up to ~40-50%) at low and mid-latitudes on the night side, and suggested that the influence of light ions could be a potential cause of this overestimation. To develop the topside model, we used 19 years of radio occultation (RO) electron density profiles, which were fitted with a Chapman function with a linear dependence of scale height on altitude. This approximation yields 4 parameters, namely the peak density and height of the F2-layer and the slope and intercept of the linear scale height trend, which were modeled using feedforward neural networks (NNs). The model was extensively validated against both RO and in-situ observations and was found to outperform the International Reference Ionosphere (IRI) model by up to an order of magnitude. Our analysis showed that the most substantial deviations of the IRI model from the data occur at altitudes of 100-200 km above the F2-layer peak. The developed NN-based ionospheric model reproduces the effects of various physical mechanisms observed in the topside ionosphere and provides highly accurate electron density predictions. This dissertation provides an extensive study of geospace dynamics, and the main results of this work contribute to the improvement of models of plasma populations in the near-Earth space environment. N2 - Die erdnahe Weltraumumgebung ist ein hochkomplexes System, das aus mehreren Regionen und Partikelpopulationen besteht, die für den Satellitenbetrieb gefährlich sind. Die in den Strahlungsgürteln und dem Ringstrom gefangenen Teilchen können bei Weltraumwetterereignissen aufgrund der tiefen dielektrischen und oberflächlichen Aufladung erhebliche Schäden an Satelliten verursachen. Näher an der Erde liegt eine weitere wichtige Region, die Ionosphäre, die die Ausbreitung von Funksignalen verzögert und die Navigation und Positionsbestimmung beeinträchtigen kann. Als Reaktion auf Fluktuationen der solaren und geomagnetischen Aktivität können sowohl die Populationen der inneren Magnetosphäre als auch der Ionosphäre innerhalb von Minuten bis Stunden drastische und plötzliche Veränderungen erfahren, was eine Herausforderung für die Vorhersage ihres Verhaltens darstellt. Angesichts der zunehmenden Abhängigkeit unserer Gesellschaft von der Satellitentechnologie ist ein besseres Verständnis und eine bessere Modellierung dieser Populationen von größter Bedeutung. In den letzten Jahren wurden zahlreiche Raumsonden gestartet, um die Dynamik von Partikelpopulationen im erdnahen Weltraum zu untersuchen, was diesen in eine datenreiche Umgebung verwandelt hat. Um aus der Fülle der verfügbaren Beobachtungen wertvolle Erkenntnisse zu gewinnen, ist der Einsatz fortschrittlicher Modellierungstechniken unabdingbar, und Methoden des maschinellen Lernens gehören zu den leistungsfähigsten verfügbaren Ansätzen. Diese Dissertation nutzt langfristige Satellitenbeobachtungen, um die Prozesse zu analysieren, die die Teilchendynamik antreiben, und schafft interdisziplinäre Verbindungen zwischen Weltraumphysik und maschinellem Lernen, indem sie neue hochmoderne Modelle der innermagnetosphärischen und ionosphärischen Teilchendynamik entwickelt. Das erste Ziel dieser Arbeit ist es, das Verhalten von Elektronen im Strahlungsgürtel und Ringstrom der Erde zu untersuchen. Unter Verwendung von ~18 Jahren Elektronenflussbeobachtungen des Global Positioning System (GPS) haben wir das erste maschinelle Lernmodell des Elektronenflusses im mittleren Erdorbit (MEO) entwickelt, das ausschließlich durch Sonnenwind und geomagnetische Indizes gesteuert wird und keine zusätzlichen Flussmessungen als Eingaben benötigt. Anschließend analysierten wir die Richtungsverteilungen der Elektronen und verwendeten zum ersten Mal Fourier-Sinus-Reihen, um die Elektronen-Stellwinkelverteilungen (PADs) in der inneren Magnetosphäre der Erde zu bestimmen. Wir führten eine epochenübergreifende Analyse von 129 geomagnetischen Stürmen während der Van-Allen-Sonden-Ära durch und zeigten, dass die Elektronen-PADs eine starke energieabhängige Reaktion auf die geomagnetische Aktivität haben. Außerdem konnten wir zeigen, dass der dynamische Druck des Sonnenwindes als guter Prädiktor für die PAD-Dynamik verwendet werden kann. Anhand der beobachteten Abhängigkeiten haben wir das erste PAD-Modell mit einer kontinuierlichen Abhängigkeit von L, der magnetischen Ortszeit (MLT) und der Aktivität erstellt und zwei Techniken entwickelt, um die Beobachtungen des äquatornahen Elektronenflusses aus Daten mit niedrigem Luftdruck mit Hilfe dieses Modells zu rekonstruieren. Das zweite Ziel dieser Arbeit ist die Entwicklung eines neuen Modells der Topside-Ionosphäre. Um dieses Ziel zu erreichen, haben wir Beobachtungen von fünf der meistgenutzten Ionosphärenmissionen gesammelt und diese Datensätze interkalibriert. So konnten wir diese Daten gemeinsam für die Modellentwicklung, die Validierung und den Vergleich mit anderen bestehenden empirischen Modellen nutzen. Wir haben zum ersten Mal gezeigt, dass die Ionendichtebeobachtungen von Swarm-Langmuir-Sonden in niedrigen und mittleren Breiten auf der Nachtseite eine Überschätzung (bis zu ~40-50%) aufweisen, und haben vorgeschlagen, dass der Einfluss leichter Ionen eine mögliche Ursache für diese Überschätzung sein könnte. Zur Entwicklung des Oberseitenmodells wurden 19 Jahre lang Elektronendichteprofile aus der Radio-Okkultation (RO) verwendet, die mit einer Chapman-Funktion mit einer linearen Abhängigkeit der Skalenhöhe von der Höhe angepasst wurden. Aus dieser Näherung ergeben sich 4 Parameter, nämlich die Spitzendichte und die Höhe der F2-Schicht sowie die Steigung und der Achsenabschnitt des linearen Trends der Skalenhöhe, die mit Hilfe von neuronalen Feedforward-Netzwerken (NN) modelliert wurden. Das Modell wurde sowohl anhand von RO- als auch von In-situ-Beobachtungen umfassend validiert und übertrifft das Modell der Internationalen Referenz-Ionosphäre (IRI). Unsere Analyse zeigte, dass die größten Abweichungen des IRI-Modells von den Daten in Höhen von 100-200 km über der F2-Schichtspitze auftreten. Das entwickelte NN-basierte Ionosphärenmodell reproduziert die Auswirkungen verschiedener physikalischer Mechanismen, die in der Topside-Ionosphäre beobachtet werden, und liefert sehr genaue Vorhersagen der Elektronendichte. Diese Dissertation bietet eine umfassende Untersuchung der Dynamik in der Geosphäre, und die wichtigsten Ergebnisse dieser Arbeit tragen zur Verbesserung der Modelle von Plasmapopulationen in der erdnahen Weltraumumgebung bei. KW - Ionosphere KW - radiation belts KW - ring current KW - space physics KW - empirical modeling KW - machine learning KW - gradient boosting KW - neural networks KW - Ionosphäre KW - empirische Modellierung KW - Gradient Boosting KW - maschinelles Lernen KW - neuronale Netze KW - Strahlungsgürtel KW - Ringstrom KW - Weltraumphysik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-613711 ER - TY - THES A1 - Seleem, Omar T1 - Towards urban pluvial flood mapping using data-driven models T1 - Kartierung städtischer Überschwemmungen mit datengesteuerten Modellen N2 - Casualties and damages from urban pluvial flooding are increasing. Triggered by short, localized, and intensive rainfall events, urban pluvial floods can occur anywhere, even in areas without a history of flooding. Urban pluvial floods have relatively small temporal and spatial scales. Although cumulative losses from urban pluvial floods are comparable, most flood risk management and mitigation strategies focus on fluvial and coastal flooding. Numerical-physical-hydrodynamic models are considered the best tool to represent the complex nature of urban pluvial floods; however, they are computationally expensive and time-consuming. These sophisticated models make large-scale analysis and operational forecasting prohibitive. Therefore, it is crucial to evaluate and benchmark the performance of other alternative methods. The findings of this cumulative thesis are represented in three research articles. The first study evaluates two topographic-based methods to map urban pluvial flooding, fill–spill–merge (FSM) and topographic wetness index (TWI), by comparing them against a sophisticated hydrodynamic model. The FSM method identifies flood-prone areas within topographic depressions while the TWI method employs maximum likelihood estimation to calibrate a TWI threshold (τ) based on inundation maps from the 2D hydrodynamic model. The results point out that the FSM method outperforms the TWI method. The study highlights then the advantage and limitations of both methods. Data-driven models provide a promising alternative to computationally expensive hydrodynamic models. However, the literature lacks benchmarking studies to evaluate the different models' performance, advantages and limitations. Model transferability in space is a crucial problem. Most studies focus on river flooding, likely due to the relative availability of flow and rain gauge records for training and validation. Furthermore, they consider these models as black boxes. The second study uses a flood inventory for the city of Berlin and 11 predictive features which potentially indicate an increased pluvial flooding hazard to map urban pluvial flood susceptibility using a convolutional neural network (CNN), an artificial neural network (ANN) and the benchmarking machine learning models random forest (RF) and support vector machine (SVM). I investigate the influence of spatial resolution on the implemented models, the models' transferability in space and the importance of the predictive features. The results show that all models perform well and the RF models are superior to the other models within and outside the training domain. The models developed using fine spatial resolution (2 and 5 m) could better identify flood-prone areas. Finally, the results point out that aspect is the most important predictive feature for the CNN models, and altitude is for the other models. While flood susceptibility maps identify flood-prone areas, they do not represent flood variables such as velocity and depth which are necessary for effective flood risk management. To address this, the third study investigates data-driven models' transferability to predict urban pluvial floodwater depth and the models' ability to enhance their predictions using transfer learning techniques. It compares the performance of RF (the best-performing model in the previous study) and CNN models using 12 predictive features and output from a hydrodynamic model. The findings in the third study suggest that while CNN models tend to generalise and smooth the target function on the training dataset, RF models suffer from overfitting. Hence, RF models are superior for predictions inside the training domains but fail outside them while CNN models could control the relative loss in performance outside the training domains. Finally, the CNN models benefit more from transfer learning techniques than RF models, boosting their performance outside training domains. In conclusion, this thesis has evaluated both topographic-based methods and data-driven models to map urban pluvial flooding. However, further studies are crucial to have methods that completely overcome the limitation of 2D hydrodynamic models. N2 - Die Zahl der Todesopfer und Schäden durch Überschwemmungen in Städten nimmt zu. Ausgelöst durch kurze, lokal begrenzte und intensive Niederschlagsereignisse können urbane pluviale Überschwemmungen überall auftreten - sogar in Gebieten, in denen es in der Vergangenheit keine Überschwemmungen gab. Urbane pluviale Überschwemmungen haben eine relativ geringe zeitliche und räumliche Ausdehnung. Obwohl die kumulativen Verluste durch urbane pluviale Überschwemmungen vergleichbar sind, konzentrieren sich die meisten Hochwasserrisikomanagement- und -minderungsstrategien auf Fluss- und Küstenüberschwemmungen. Numerisch-physikalisch-hydrodynamische Modelle gelten als das beste Instrument zur Darstellung der komplexen Natur städtischer pluvialer Überschwemmungen; sie sind jedoch rechenintensiv und zeitaufwändig. Diese anspruchsvollen Modelle machen groß angelegte Analysen und operationelle Vorhersagen unerschwinglich. Daher ist es von entscheidender Bedeutung, die Leistung anderer Methoden zu bewerten und zu vergleichen, die komplexe hydrodynamische Modelle ersetzen könnten. Die Ergebnisse dieser kumulativen Arbeit werden in drei Forschungsartikeln dargestellt. In der ersten Studie bewerte ich zwei topografiebasierte Methoden zur Kartierung von Überschwemmungen in Städten, die Fill-Spill-Merge-Methode (FSM) und den topografischen Nässeindex (TWI), indem ich sie mit einem hochentwickelten hydrodynamischen Modell vergleiche. Die FSM-Methode identifiziert überschwemmungsgefährdete Gebiete innerhalb topografischer Senken, während die TWI-Methode eine Maximum-Likelihood-Schätzung verwendet, um einen TWI-Schwellenwert (τ) auf der Grundlage von Überschwemmungskarten aus dem hydrodynamischen 2D-Modell zu kalibrieren. Die Ergebnisse zeigen, dass die FSM-Methode die TWI-Methode übertrifft. Anschließend werden die Vorteile und Grenzen beider Methoden aufgezeigt. Datengesteuerte Modelle stellen eine vielversprechende Alternative zu rechenintensiven hydrodynamischen Modellen dar. In der Literatur fehlt es jedoch an Benchmarking-Studien zur Bewertung der Leistung, Vorteile und Grenzen der verschiedenen Modelle. Die räumliche Übertragbarkeit von Modellen ist ein entscheidendes Problem. Die meisten Studien konzentrieren sich auf Flussüberschwemmungen, was wahrscheinlich auf die relative Verfügbarkeit von Abfluss- und Regenmesserdaten für Training und Validierung zurückzuführen ist. Außerdem betrachten sie diese Modelle als Black Boxes. In der zweiten Studie verwende ich ein Hochwasserinventar für die Stadt Berlin und 11 prädiktive Merkmale, die potenziell auf eine erhöhte pluviale Hochwassergefahr hinweisen, um die Anfälligkeit für pluviale Überschwemmungen in Städten zu kartieren. Dazu verwende ich ein Faltungsneuronales Netzwerk (CNN), ein Künstliches Neuronales Netzwerk (ANN) und die Benchmarking-Modelle Random Forest (RF) und Support Vector Machine (SVM). Ich untersuche den Einfluss der räumlichen Auflösung auf die implementierten Modelle, die Übertragbarkeit der Modelle im Raum und die Bedeutung der prädiktiven Merkmale. Die Ergebnisse zeigen, dass alle Modelle gut abschneiden und die RF-Modelle den anderen Modellen innerhalb und außerhalb des Trainingsbereichs überlegen sind. Die Modelle, die mit feiner räumlicher Auflösung (2 und 5 m) entwickelt wurden, konnten hochwassergefährdete Gebiete besser identifizieren. Schließlich zeigen die Ergebnisse, dass der Aspekt das wichtigste Vorhersagemerkmal für die CNN-Modelle ist, und die Höhe für die anderen Modelle. Während Hochwasseranfälligkeitskarten überschwemmungsgefährdete Gebiete identifizieren, stellen sie keine Hochwasservariablen wie Geschwindigkeit und Wassertiefe dar, die für ein effektives Hochwasserrisikomanagement notwendig sind. Um dieses Problem anzugehen, untersuche ich in der dritten Studie die Übertragbarkeit datengesteuerter Modelle auf die Vorhersage der Überschwemmungstiefe in städtischen Gebieten und die Fähigkeit der Modelle, ihre Vorhersagen durch Transfer-Learning-Techniken zu verbessern. Ich vergleiche die Leistung von RF- (das beste Modell in der vorherigen Studie) und CNN-Modellen anhand von 12 Vorhersagemerkmalen und den Ergebnissen eines hydrodynamischen Modells. Die Ergebnisse der dritten Studie deuten darauf hin, dass CNN-Modelle dazu neigen, die Zielfunktion auf dem Trainingsdatensatz zu verallgemeinern und zu glätten, während RF-Modelle unter Overfitting leiden. Daher sind RF-Modelle für Vorhersagen innerhalb der Trainingsbereiche überlegen, versagen aber außerhalb davon, während CNN-Modelle den relativen Leistungsverlust außerhalb der Trainingsdomänen kontrollieren können. Schließlich profitieren die CNN-Modelle mehr von Transfer-Learning-Techniken als RF-Modelle, was ihre Leistung außerhalb der Trainingsbereiche erhöht. Zusammenfassend lässt sich sagen, dass in dieser Arbeit sowohl topografiebasierte Methoden als auch datengesteuerte Modelle zur Kartierung von Überschwemmungen in Städten bewertet wurden. Weitere Studien sind jedoch von entscheidender Bedeutung, um Methoden zu entwickeln, die die Beschränkungen von 2D-hydrodynamischen Modellen vollständig überwinden. KW - urban pluvial flood KW - machine learning KW - deep learning KW - topography KW - tiefes Lernen KW - maschinelles Lernen KW - Topographie KW - städtische Überschwemmungen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-598137 ER - TY - BOOK A1 - Weber, Benedikt T1 - Human pose estimation for decubitus prophylaxis T1 - Verwendung von Posenabschätzung zur Dekubitusprophylaxe N2 - Decubitus is one of the most relevant diseases in nursing and the most expensive to treat. It is caused by sustained pressure on tissue, so it particularly affects bed-bound patients. This work lays a foundation for pressure mattress-based decubitus prophylaxis by implementing a solution to the single-frame 2D Human Pose Estimation problem. For this, methods of Deep Learning are employed. Two approaches are examined, a coarse-to-fine Convolutional Neural Network for direct regression of joint coordinates and a U-Net for the derivation of probability distribution heatmaps. We conclude that training our models on a combined dataset of the publicly available Bodies at Rest and SLP data yields the best results. Furthermore, various preprocessing techniques are investigated, and a hyperparameter optimization is performed to discover an improved model architecture. Another finding indicates that the heatmap-based approach outperforms direct regression. This model achieves a mean per-joint position error of 9.11 cm for the Bodies at Rest data and 7.43 cm for the SLP data. We find that it generalizes well on data from mattresses other than those seen during training but has difficulties detecting the arms correctly. Additionally, we give a brief overview of the medical data annotation tool annoto we developed in the bachelor project and furthermore conclude that the Scrum framework and agile practices enhanced our development workflow. N2 - Dekubitus ist eine der relevantesten Krankheiten in der Krankenpflege und die kostspieligste in der Behandlung. Sie wird durch anhaltenden Druck auf Gewebe verursacht, betrifft also insbesondere bettlägerige Patienten. Diese Arbeit legt eine Grundlage für druckmatratzenbasierte Dekubitusprophylaxe, indem eine Lösung für das Einzelbild-2D-Posenabschätzungsproblem implementiert wird. Dafür werden Methoden des tiefen Lernens verwendet. Zwei Ansätze, basierend auf einem Gefalteten Neuronalen grob-zu-fein Netzwerk zur direkten Regression der Gelenkkoordinaten und auf einem U-Netzwerk zur Ableitung von Wahrscheinlichkeitsverteilungsbildern, werden untersucht. Wir schlussfolgern, dass das Training unserer Modelle auf einem kombinierten Datensatz, bestehend aus den frei verfügbaren Bodies at Rest und SLP Daten, die besten Ergebnisse liefert. Weiterhin werden diverse Vorverarbeitungsverfahren untersucht und eine Hyperparameteroptimierung zum Finden einer verbesserten Modellarchitektur durchgeführt. Der wahrscheinlichkeitsverteilungsbasierte Ansatz übertrifft die direkte Regression. Dieses Modell erreicht einen durchschnittlichen Pro-Gelenk-Positionsfehler von 9,11 cm auf den Bodies at Rest und von 7,43 cm auf den SLP Daten. Wir sehen, dass es gut auf Daten anderer als der im Training verwendeten Matratzen funktioniert, aber Schwierigkeiten mit der korrekten Erkennung der Arme hat. Weiterhin geben wir eine kurze Übersicht des medizinischen Datenannotationstools annoto, welches wir im Zusammenhang mit dem Bachelorprojekt entwickelt haben, und schlussfolgern außerdem, dass Scrum und agile Praktiken unseren Entwicklungsprozess verbessert haben. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 153 KW - machine learning KW - deep learning KW - convolutional neural networks KW - pose estimation KW - decubitus KW - telemedicine KW - maschinelles Lernen KW - tiefes Lernen KW - gefaltete neuronale Netze KW - Posenabschätzung KW - Dekubitus KW - Telemedizin Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-567196 SN - 978-3-86956-551-4 SN - 1613-5652 SN - 2191-1665 IS - 153 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Chen, Junchao T1 - A self-adaptive resilient method for implementing and managing the high-reliability processing system T1 - Eine selbstadaptive belastbare Methode zum Implementieren und Verwalten von hochzuverlässigen Verarbeitungssysteme N2 - As a result of CMOS scaling, radiation-induced Single-Event Effects (SEEs) in electronic circuits became a critical reliability issue for modern Integrated Circuits (ICs) operating under harsh radiation conditions. SEEs can be triggered in combinational or sequential logic by the impact of high-energy particles, leading to destructive or non-destructive faults, resulting in data corruption or even system failure. Typically, the SEE mitigation methods are deployed statically in processing architectures based on the worst-case radiation conditions, which is most of the time unnecessary and results in a resource overhead. Moreover, the space radiation conditions are dynamically changing, especially during Solar Particle Events (SPEs). The intensity of space radiation can differ over five orders of magnitude within a few hours or days, resulting in several orders of magnitude fault probability variation in ICs during SPEs. This thesis introduces a comprehensive approach for designing a self-adaptive fault resilient multiprocessing system to overcome the static mitigation overhead issue. This work mainly addresses the following topics: (1) Design of on-chip radiation particle monitor for real-time radiation environment detection, (2) Investigation of space environment predictor, as support for solar particle events forecast, (3) Dynamic mode configuration in the resilient multiprocessing system. Therefore, according to detected and predicted in-flight space radiation conditions, the target system can be configured to use no mitigation or low-overhead mitigation during non-critical periods of time. The redundant resources can be used to improve system performance or save power. On the other hand, during increased radiation activity periods, such as SPEs, the mitigation methods can be dynamically configured appropriately depending on the real-time space radiation environment, resulting in higher system reliability. Thus, a dynamic trade-off in the target system between reliability, performance and power consumption in real-time can be achieved. All results of this work are evaluated in a highly reliable quad-core multiprocessing system that allows the self-adaptive setting of optimal radiation mitigation mechanisms during run-time. Proposed methods can serve as a basis for establishing a comprehensive self-adaptive resilient system design process. Successful implementation of the proposed design in the quad-core multiprocessor shows its application perspective also in the other designs. N2 - Infolge der CMOS-Skalierung wurden strahleninduzierte Einzelereignis-Effekte (SEEs) in elektronischen Schaltungen zu einem kritischen Zuverlässigkeitsproblem für moderne integrierte Schaltungen (ICs), die unter rauen Strahlungsbedingungen arbeiten. SEEs können in der kombinatorischen oder sequentiellen Logik durch den Aufprall hochenergetischer Teilchen ausgelöst werden, was zu destruktiven oder nicht-destruktiven Fehlern und damit zu Datenverfälschungen oder sogar Systemausfällen führt. Normalerweise werden die Methoden zur Abschwächung von SEEs statisch in Verarbeitungsarchitekturen auf der Grundlage der ungünstigsten Strahlungsbedingungen eingesetzt, was in den meisten Fällen unnötig ist und zu einem Ressourcen-Overhead führt. Darüber hinaus ändern sich die Strahlungsbedingungen im Weltraum dynamisch, insbesondere während Solar Particle Events (SPEs). Die Intensität der Weltraumstrahlung kann sich innerhalb weniger Stunden oder Tage um mehr als fünf Größenordnungen ändern, was zu einer Variation der Fehlerwahrscheinlichkeit in ICs während SPEs um mehrere Größenordnungen führt. In dieser Arbeit wird ein umfassender Ansatz für den Entwurf eines selbstanpassenden, fehlerresistenten Multiprozessorsystems vorgestellt, um das Problem des statischen Mitigation-Overheads zu überwinden. Diese Arbeit befasst sich hauptsächlich mit den folgenden Themen: (1) Entwurf eines On-Chip-Strahlungsteilchen Monitors zur Echtzeit-Erkennung von Strahlung Umgebungen, (2) Untersuchung von Weltraumumgebungsprognosen zur Unterstützung der Vorhersage von solaren Teilchen Ereignissen, (3) Konfiguration des dynamischen Modus in einem belastbaren Multiprozessorsystem. Daher kann das Zielsystem je nach den erkannten und vorhergesagten Strahlungsbedingungen während des Fluges so konfiguriert werden, dass es während unkritischer Zeiträume keine oder nur eine geringe Strahlungsminderung vornimmt. Die redundanten Ressourcen können genutzt werden, um die Systemleistung zu verbessern oder Energie zu sparen. In Zeiten erhöhter Strahlungsaktivität, wie z. B. während SPEs, können die Abschwächungsmethoden dynamisch und in Abhängigkeit von der Echtzeit-Strahlungsumgebung im Weltraum konfiguriert werden, was zu einer höheren Systemzuverlässigkeit führt. Auf diese Weise kann im Zielsystem ein dynamischer Kompromiss zwischen Zuverlässigkeit, Leistung und Stromverbrauch in Echtzeit erreicht werden. Alle Ergebnisse dieser Arbeit wurden in einem hochzuverlässigen Quad-Core-Multiprozessorsystem evaluiert, das die selbstanpassende Einstellung optimaler Strahlungsschutzmechanismen während der Laufzeit ermöglicht. Die vorgeschlagenen Methoden können als Grundlage für die Entwicklung eines umfassenden, selbstanpassenden und belastbaren Systementwurfsprozesses dienen. Die erfolgreiche Implementierung des vorgeschlagenen Entwurfs in einem Quad-Core-Multiprozessor zeigt, dass er auch für andere Entwürfe geeignet ist. KW - single event upset KW - solar particle event KW - machine learning KW - self-adaptive multiprocessing system KW - maschinelles Lernen KW - selbstanpassendes Multiprozessorsystem KW - strahleninduzierte Einzelereignis-Effekte KW - Sonnenteilchen-Ereignis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-583139 ER -