TY - THES A1 - Breitling, Frank T1 - Propagation of energetic electrons in the solar corona observed with LOFAR T1 - Ausbreitung energiereicher Elektronen in der Sonnenkorona beobachtet mit LOFAR N2 - This work reports about new high-resolution imaging and spectroscopic observations of solar type III radio bursts at low radio frequencies in the range from 30 to 80 MHz. Solar type III radio bursts are understood as result of the beam-plasma interaction of electron beams in the corona. The Sun provides a unique opportunity to study these plasma processes of an active star. Its activity appears in eruptive events like flares, coronal mass ejections and radio bursts which are all accompanied by enhanced radio emission. Therefore solar radio emission carries important information about plasma processes associated with the Sun’s activity. Moreover, the Sun’s atmosphere is a unique plasma laboratory with plasma processes under conditions not found in terrestrial laboratories. Because of the Sun’s proximity to Earth, it can be studied in greater detail than any other star but new knowledge about the Sun can be transfer to them. This “solar stellar connection” is important for the understanding of processes on other stars. The novel radio interferometer LOFAR provides imaging and spectroscopic capabilities to study these processes at low frequencies. Here it was used for solar observations. LOFAR, the characteristics of its solar data and the processing and analysis of the latter with the Solar Imaging Pipeline and Solar Data Center are described. The Solar Imaging Pipeline is the central software that allows using LOFAR for solar observations. So its development was necessary for the analysis of solar LOFAR data and realized here. Moreover a new density model with heat conduction and Alfvén waves was developed that provides the distance of radio bursts to the Sun from dynamic radio spectra. Its application to the dynamic spectrum of a type III burst observed on March 16, 2016 by LOFAR shows a nonuniform radial propagation velocity of the radio emission. The analysis of an imaging observation of type III bursts on June 23, 2012 resolves a burst as bright, compact region localized in the corona propagating in radial direction along magnetic field lines with an average velocity of 0.23c. A nonuniform propagation velocity is revealed. A new beam model is presented that explains the nonuniform motion of the radio source as a propagation effect of an electron ensemble with a spread velocity distribution and rules out a monoenergetic electron distribution. The coronal electron number density is derived in the region from 1.5 to 2.5 R☉ and fitted with the newly developed density model. It determines the plasma density for the interplanetary space between Sun and Earth. The values correspond to a 1.25- and 5-fold Newkirk model for harmonic and fundamental emission, respectively. In comparison to data from other radio instruments the LOFAR data shows a high sensitivity and resolution in space, time and frequency. The new results from LOFAR’s high resolution imaging spectroscopy are consistent with current theories of solar type III radio bursts and demonstrate its capability to track fast moving radio sources in the corona. LOFAR solar data is found to be a valuable source for solar radio physics and opens a new window for studying plasma processes associated with highly energetic electrons in the solar corona. N2 - Diese Arbeit befasst sich mit neuen hochaufgelösten abbildenden und spektroskopischen Beobachtungen von solaren Typ III Radiobursts bei niedrigen Frequenzen im Bereich von 30 bis 80 MHz. Solare Typ III Radiobursts werden auf die Beam-Plasmawechselwirkung von Elektronenstrahlen in der Korona zurückgeführt. Die Sonne stellt eine einzigartige Möglichkeit dar, diese Plasmaprozesse eines aktiven Sterns zu untersuchen. Die Aktivität zeigt sich in eruptiven Ereignissen wie Flares, koronalen Massenauswürfen und Radiobursts, die jeweils von erhöhter Radiostrahlung begleitet werden. Daher trägt solare Radioemission wichtige Informationen über Plasmaprozesse, die mit Sonnenaktivität in Verbindung stehen. Darüber hinaus ist die Sonne auch ein einzigartiges Plasmalabor mit Plasmaprozessen unter Bedingungen die man nicht in irdischen Laboren findet. Aufgrund ihres vergleichsweise geringen Abstands kann man die Sonne wesentlich genauer beobachten als andere Sterne, aber neue Erkenntnisse von ihr auf andere Sterne übertragen. Diese “Solare-Stellare Verbindung” ist wichtig um Prozesse auf anderen Sternen zu verstehen. Das neue Radiointerferometer LOFAR bietet abbildende und spektroskopische Möglichkeiten, um diese Prozesse bei niedrigen Frequenzen zu untersuchen und wurde hier für Sonnenbeobachtungen genutzt. LOFAR, die Besonderheiten seiner Sonnendaten sowie das Verarbeiten und Analysieren dieser Daten mit der Solar Imaging Pipeline und dem Solar Data Center werden beschrieben. Die Solar Imaging Pipeline ist die zentrale Software, die die Nutzung von LOFAR für Sonnenbeobachtungen ermöglicht. Daher war deren Entwicklung für die Analyse von Sonnendaten notwendig und ist im Rahmen dieser Arbeit erfolgt. Außerdem wurde ein neues Dichtemodell mit Wärmeleitung und Alfvén-Wellen entwickelt, welches die Bestimmung der Entfernung von Radiobursts zur Sonne mittels dynamischer Spektren ermöglicht. Die Anwendung auf dynamische Spektren eines LOFAR Typ III Bursts am 16. März 2016 zeigt eine radiale, ungleichförmige Ausbreitungsgeschwindigkeit der Radioemission. Die Analyse einer abbildenden Beobachtung von Typ III Bursts am 23. Juni 2012 zeigt den Burst als helle, kompakte Region in der Korona die sich in radiale Richtung entlang magnetischer Feldlinien mit einer durchschnittlichen Geschwindigkeit von 0.23c (c, Lichtgeschwindigkeit) bewegt. Die Geschwindigkeit ist nicht gleichförmig. Ein neues Beammodell wird vorgestellt, dass diese ungleichförmige Geschwindigkeit als Ausbreitungseffekt eines Elektronenensemble mit einer ausgedehnten Geschwindigkeitsverteilung erklärt und eine monoenergetische Elektronenverteilung ausschließt. Die koronale Elektronenzahldichte wird in der Region von 1.5 bis 2.5 R☉ ermittelt und ein Fit mit dem neuen Dichtemodell durchgeführt. Dadurch ist die Plasmadichte im ganzen interplanetaren Raum zwischen Sonne und Erde bestimmt. Die Werte entsprechen jeweils einem 1.25- und 5-fachen Newkirk Modell im Fall von fundamentaler und harmonischer Emission. Im Vergleich zu Daten von anderen Radioinstrumenten haben LOFAR-Daten eine hohe Empfindlichkeit und Auflösung in Raum, Zeit und Frequenz. Die neuen Ergebnisse von LOFARs hochauflösender, abbildender Spektroskopie stimmen mit derzeitigen Theorien von solaren Typ III Radiobursts überein und zeigen die Möglichkeit, schnell bewegliche Radioquellen in der Korona zu verfolgen. LOFAR Sonnendaten wurden als wertvolle Quelle für solare Radiophysik erkannt und öffnen eine neues Fenster zur Untersuchung von Plasmaprozessen hochenergetischer Elektronen in der Korona. KW - sun KW - type III KW - radio burst KW - LOFAR KW - plasma physics KW - Sonne KW - Typ III KW - Radioburst KW - Plasmaphysik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396893 ER - TY - THES A1 - Vocks, Christian T1 - Electron kinetic processes in the solar corona and wind T1 - Elektronenkinetische Prozesse in der Korona der Sonne und im Sonnenwind N2 - The Sun is surrounded by a 10^6 K hot atmosphere, the corona. The corona and the solar wind are fully ionized, and therefore in the plasma state. Magnetic fields play an important role in a plasma, since they bind electrically charged particles to their field lines. EUV spectroscopes, like the SUMER instrument on-board the SOHO spacecraft, reveal a preferred heating of coronal ions and strong temperature anisotropies. Velocity distributions of electrons can be measured directly in the solar wind, e.g. with the 3DPlasma instrument on-board the WIND satellite. They show a thermal core, an anisotropic suprathermal halo, and an anti-solar, magnetic-field-aligned, beam or "strahl". For an understanding of the physical processes in the corona, an adequate description of the plasma is needed. Magnetohydrodynamics (MHD) treats the plasma simply as an electrically conductive fluid. Multi-fluid models consider e.g. protons and electrons as separate fluids. They enable a description of many macroscopic plasma processes. However, fluid models are based on the assumption of a plasma near thermodynamic equilibrium. But the solar corona is far away from this. Furthermore, fluid models cannot describe processes like the interaction with electromagnetic waves on a microscopic scale. Kinetic models, which are based on particle velocity distributions, do not show these limitations, and are therefore well-suited for an explanation of the observations listed above. For the simplest kinetic models, the mirror force in the interplanetary magnetic field focuses solar wind electrons into an extremely narrow beam, which is contradicted by observations. Therefore, a scattering mechanism must exist that counteracts the mirror force. In this thesis, a kinetic model for electrons in the solar corona and wind is presented that provides electron scattering by resonant interaction with whistler waves. The kinetic model reproduces the observed components of solar wind electron distributions, i.e. core, halo, and a "strahl" with finite width. But the model is not only applicable on the quiet Sun. The propagation of energetic electrons from a solar flare is studied, and it is found that scattering in the direction of propagation and energy diffusion influence the arrival times of flare electrons at Earth approximately to the same degree. In the corona, the interaction of electrons with whistler waves does not only lead to scattering, but also to the formation of a suprathermal halo, as it is observed in interplanetary space. This effect is studied both for the solar wind as well as the closed volume of a coronal magnetic loop. The result is of fundamental importance for solar-stellar relations. The quiet solar corona always produces suprathermal electrons. This process is closely related to coronal heating, and can therefore be expected in any hot stellar corona. In the second part of this thesis it is detailed how to calculate growth or damping rates of plasma waves from electron velocity distributions. The emission and propagation of electron cyclotron waves in the quiet solar corona, and that of whistler waves during solar flares, is studied. The latter can be observed as so-called fiber bursts in dynamic radio spectra, and the results are in good agreement with observed bursts. N2 - Die Sonne ist von einer 10^6 K heißen Atmosphäre, der Korona, umgeben. Sie ist ebenso wie der Sonnenwind vollständig ionisiert, also ein Plasma. Magnetfelder spielen in einem Plasma eine wichtige Rolle, da sie elektrisch geladene Teilchen an ihre Feldlinien binden. EUV-Spektroskope, wie SUMER auf der Raumsonde SOHO, zeigen eine bevorzugte Heizung koronaler Ionen sowie starke Temperaturanisotropien. Geschwindigkeitsverteilung von Elektronen können im Sonnenwind direkt gemessen werden, z.B. mit dem 3DPlasma Instrument auf dem Satelliten WIND. Sie weisen einen thermischen Kern, einen isotropen suprathermischen Halo, sowie einen anti-solaren, magnetfeldparallelen Strahl auf. Zum Verständnis der physikalischen Prozesse in der Korona wird eine geeignete Beschreibung des Plasms benötigt. Die Magnetohydrodynamik (MHD) betrachtet das Plasma einfach als elektrisch leitfähige Flüssigkeit. Mehrflüssigkeitsmodelle behandeln z.B. Protonen und Elektronen als getrennte Fluide. Damit lassen sich viele makroskopische Vorgänge beschreiben. Fluidmodelle basieren aber auf der Annahme eines Plasmas nahe am thermodynamischen Gleichgewicht. Doch die Korona ist weit davon entfernt. Ferner ist es mit Fluidmodellen nicht möglich, Prozesse wie die Wechselwirkung mit elektromagnetischen Wellen mikroskopisch zu beschreiben. Kinetische Modelle, die Geschwindigkeitsverteilungen beschreiben, haben diese Einschränkungen nicht und sind deshalb geeignet, die oben genannten Messungen zu erklären. Bei den einfachsten Modellen bündelt die Spiegelkraft im interplanetaren Magnetfeld die Elektronen des Sonnenwinds in einen extrem engen Strahl, im Widerspruch zur Beobachtung. Daher muss es einen Streuprozess geben, der dem entgegenwirkt. In der vorliegenden Arbeit wird ein kinetisches Modell für Elektronen in der Korona und im Sonnenwind präsentiert, bei dem die Elektronen durch resonante Wechselwirkung mit Whistler-Wellen gestreut werden. Das kinetische Modell reproduziert die beobachteten Bestandteile von Elektronenverteilungen im Sonnenwind, d.h. Kern, Halo und einen Strahl endlicher Breite. Doch es ist nicht nur auf die ruhige Sonne anwendbar. Die Ausbreitung energetischer Elektronen eines solaren Flares wird untersucht und dabei festgestellt, dass Streuung in Ausbreitungsrichtung und Diffusion in Energie die Ankunftszeiten von Flare-Elektronen bei der Erde in etwa gleichem Maße beeinflussen. Die Wechselwirkung von Elektronen mit Whistlern führt in der Korona nicht nur zu Streuung, sondern auch zur Erzeugung eines suprathermischen Halos, wie er im interplanetaren Raum gemessen wird. Dieser Effekt wird sowohl im Sonnenwind als auch in einem geschlossenen koronalen Magnetfeldbogen untersucht. Das Ergebnis ist von fundamentaler Bedeutung für solar-stellare Beziehungen. Die ruhige Korona erzeugt stets suprathermische Elektronen. Dieser Prozeß ist eng mit der Koronaheizung verbunden, und daher in jeder heißen stellaren Korona zu erwarten. Im zweiten Teil der Arbeit wird beschrieben, wie sich aus der Geschwindigkeitsverteilung der Elektronen die Dämpfung oder Anregung von Plasmawellen berechnen lässt. Die Erzeugung und Ausbreitung von Elektronenzyklotronwellen in der ruhigen Korona und von Whistlern während solarer Flares wird untersucht. Letztere sind als sogenannte fiber bursts in dynamischen Radiospektren beobachtbar, und die Ergebnisse stimmen gut mit beobachteten Bursts überein. KW - Sonnenkorona KW - Plasmaphysik KW - kinetische Theorie KW - Elektronen-Geschwindigkeitsverteilungen KW - Whistler-Wellen KW - Solar corona KW - plasma physics KW - kinetic theory KW - electron velocity distributions KW - whistler waves Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65259 ER -