TY - THES A1 - Scherer, Philipp Cédric T1 - Infection on the move T1 - Infektion in Bewegung BT - individual host movement drives disease persistence in spatially structured landscapes BT - individuelle Der Einfluss von Bewegung von Wirtstieren auf die Persistenz von Krankheiten in räumlich strukturierten Landschaften N2 - Movement plays a major role in shaping population densities and contact rates among individuals, two factors that are particularly relevant for disease outbreaks. Although any differences in movement behaviour due to individual characteristics of the host and heterogeneity in landscape structure are likely to have considerable consequences for disease dynamics, these mechanisms are neglected in most epidemiological studies. Therefore, developing a general understanding how the interaction of movement behaviour and spatial heterogeneity shapes host densities, contact rates and ultimately pathogen spread is a key question in ecological and epidemiological research. In my thesis, I address this gap using both theoretical and empirical modelling approaches. In the theoretical part of my thesis, I investigated bottom-up effects of individual movement behaviour and landscape structure on host density, contact rates, and ultimately disease dynamics. I extended an established agent-based model that simulates ecological and epidemiological key processes to incorporate explicit movement of host individuals and landscape complexity. Neutral landscape models are a powerful basis for spatially-explicit modelling studies to imitate the complex characteristics of natural landscapes. In chapter 2, the first study of my thesis, I introduce two complementary R packages, NLMR and landscapetools, that I have co-developed to simplify the workflow of simulation and customization of such landscapes. To demonstrate the use of the packages I present a case study using the spatially explicit eco-epidemiological model and show that landscape complexity per se increases the probability of disease persistence. By using simple rules to simulate explicit host movement, I highlight in chapter 3 how disease dynamics are affected by population-level properties emerging from different movement rules leading to differences in the realized movement distance, spatiotemporal host density, and heterogeneity in transmission rates. As a consequence, mechanistic movement decisions based on the underlying landscape or conspecific competition led to considerably higher probabilities than phenomenological random walk approaches due directed movement leading to spatiotemporal differences in host densities. The results of these two chapters highlight the need to explicitly consider spatial heterogeneity and host movement behaviour when theoretical approaches are used to assess control measures to prevent outbreaks or eradicate diseases. In the empirical part of my thesis (chapter 4), I focus on the spatiotemporal dynamics of Classical Swine Fever in a wild boar population by analysing epidemiological data that was collected during an outbreak in Northern Germany persisting for eight years. I show that infection risk exhibits different seasonal patterns on the individual and the regional level. These patterns on the one hand show a higher infection risk in autumn and winter that may arise due to onset of mating behaviour and hunting intensity, which result in increased movement ranges. On the other hand, the increased infection risk of piglets, especially during the birth season, indicates the importance of new susceptible host individuals for local pathogen spread. The findings of this chapter underline the importance of different spatial and temporal scales to understand different components of pathogen spread that can have important implications for disease management. Taken together, the complementary use of theoretical and empirical modelling in my thesis highlights that our inferences about disease dynamics depend heavily on the spatial and temporal resolution used and how the inclusion of explicit mechanisms underlying hosts movement are modelled. My findings are an important step towards the incorporation of spatial heterogeneity and a mechanism-based perspective in eco-epidemiological approaches. This will ultimately lead to an enhanced understanding of the feedbacks of contact rates on pathogen spread and disease persistence that are of paramount importance to improve predictive models at the interface of ecology and epidemiology. N2 - Bewegung nimmt eine zentrale Rolle bei der Entstehung von Populationsdichten und Kontaktraten zwischen Individuen ein, zwei Faktoren, die bei einem Krankheitsausbruch von besonderer Bedeutung sind. Obwohl Unterschiede im Bewegungsverhalten aufgrund individueller Merkmale des Wirtes und der Heterogenität der Landschaftsstruktur erhebliche Auswirkungen auf Krankheitsdynamiken haben, werden diese Mechanismen in den meisten epidemiologischen Studien vernachlässigt. Daher ist die Frage, wie das Zusammenspiel von Bewegungsverhalten mit räumlicher Heterogenität die Wirtsdichte und die Kontaktraten und somit letztlich die Ausbreitung von Krankheitserregern beeinflusst, eine Schlüsselfrage in der ökologisch-epidemiologischen Forschung. In meiner Dissertation gehe ich diese Frage mit theoretischen und empirischen Modellierungs-ansätzen an. Im theoretischen Teil meiner Arbeit untersuchte ich die Effekte des individuellen Bewegungsverhaltens und der Landschaftsstruktur auf die Wirtsdichte, die Kontaktraten und letztendlich auf Krankheitsdynamiken. Dafür habe ich ein etabliertes agentenbasiertes Modell angepasst, das ökologische und epidemiologische Prozesse simuliert, um die genaue Bewegung von Wirtsindividuen und die Komplexität der Landschaft zu berücksichtigen. Dabei sind sogenannte „Neutrale Landschaftsmodelle“ eine objektive Grundlage, um die komplexen Eigenschaften von natürlichen Landschaften nachzuahmen. In Kapitel 2, der ersten Studie in meiner Dissertation, stelle ich zwei komplementäre Erweiterungen für die Programmiersprache R vor, NLMR und landscapetools, die ich entscheidend mitentwickelt habe, um die Simulation und Modifizierung solcher Landschaften zu vereinfachen. Um die Verwendung dieser Erweiterungen zu demonstrieren, stelle ich eine Fallstudie basierend auf dem ökologisch-epidemiologischen Simulationsmodell vor und zeige, dass heterogene Landschaften per se die Wahrscheinlichkeit der Persistenz von Krankheiten erhöhen. Im dritten Kapitel zeige ich, wie großskalige Dynamiken während eines Krankheitsausbruchs durch verschiedene Bewegungsregeln der Wirtstiere beeinflusst werden. Diese verschiedenen Bewegungsregeln hatten dabei Bewegungs- und Kontaktmuster mit Unterschieden in der realisierten Bewegungsdistanz, der raumzeitlichen Verteilung von Wirtstieren, sowie der Übertragungsraten zwischen den Habitaten zur Folge. Infolgedessen führten mechanistische Bewegungsentscheidungen, die auf Eigenschaften der Landschaft oder der Intensität der Konkurrenz beruhten, zu deutlich höheren Wahrscheinlichkeiten als phänomenologische Zufallslauf („random walk“)-Ansätze. Die Ergebnisse dieser beiden Kapitel verdeutlichen die Notwendigkeit, die räumliche Heterogenität und das Bewegungsverhalten der Wirte explizit zu berücksichtigen, wenn solche theoretischen Modelle in der Praxis Anwendung finden sollen, z. B. um Strategien zur Eindämmung von Seuchenzügen in Wildtieren zu entwickeln. Im empirischen Teil meiner Arbeit (Kapitel 4) konzentriere ich mich auf die raumzeitliche Dynamik eines Ausbruchs der Klassischen Schweinepest in einer Wildschweinpopulation mittels Analyse epidemiologischer Daten, die während eines Ausbruchs in Norddeutschland über acht Jahre aufgenommen wurden. Das Infektionsrisiko auf individueller und regionaler Ebene wies dabei unterschiedliche saisonale Muster auf. Diese Muster zeigen einerseits ein erhöhtes regionales Infektionsrisiko im Herbst und Winter, das womöglich aufgrund erhöhter Bewegungsraten der Wirtstiere auftritt, und durch das Paarungsverhalten und der Jagdintensität während dieser Zeitausgelöst wird. Andererseits unterstreicht das erhöhte individuelle Infektionsrisiko von Frisch-lingen, insbesondere während der Geburtszeit, die Auswirkungen von lokal erhöhten Wirtsdichten auf die lokale Ausbreitung von Krankheitserregern. Die Ergebnisse dieses Kapitels zeigen die Bedeutung verschiedener räumlicher und zeitlicher Skalen für das Verständnis verschiedener Komponenten von Epidemien, die wichtige Auswirkungen auf das Krankheitsmanagement haben können. Zusammenfassend unterstreicht der komplementäre Einsatz theoretischer und empirischer Modellierung in meiner Arbeit, dass es unerlässlich ist, die mechanistische Basis der Wirts-Kontakt-raten zu berücksichtigen, nämlich räumliche Heterogenität und Bewegungsverhalten der Wirtstiere, um ein Verständnis über Krankheitsverläufe in Wildtierbeständen zu erlangen und Schluss-folgerungen über das Persistenzgeschehen ziehen zu können. Meine Ergebnisse sind ein erster wichtiger Schritt in diese Richtung. KW - movement ecology KW - disease ecology KW - landscape heterogeneity KW - Rstats KW - agent-based model KW - disease persistence KW - wild boar KW - classical swine fever KW - Bewegungsökologie KW - Krankheitsökologie KW - Landschaftsheterogenität KW - R (Programmiersprache) KW - agentenbasiertes Modell KW - Krankheitsausbruch KW - Wildschwein KW - klassische Schweinepest Y1 - 2019 ER - TY - THES A1 - Schirmer, Annika T1 - Consistent individual differences in movement-related behaviour as equalising and/or stabilising mechanisms for species coexistence T1 - Konstante individuelle Unterschiede in Bewegungs-relevanten Verhaltensweisen als stabilisierende und/oder angleichende Mechanismen für die Koexistenz von Arten N2 - The facilitation of species coexistence has been a central theme in ecological research for years, highlighting two key aspects: ecological niches and competition between species. According to the competitive exclusion principle, the overlap of species niches predicts the amount of shared resources and therefore competition between species, determining their ability to coexist. Only if niches of two species are sufficiently different, thus niche overlap is low, competition within species is higher than competition between species and stable coexistence is possible. Thereby, differences in species mean traits are focused on and conspecific individuals are assumed to be interchangeable. This approach might be outdated since behaviour, as a key aspect mediating niche differentiation between species, is individual based. Individuals from one species consistently differ across time and situations in their behavioural traits. Causes and consequences of consistent behavioural differences have been thoroughly investigated stimulating their recent incorporation into ecological interactions and niche theory. Spatial components have so far been largely overlooked, although animal movement is strongly connected to several aspects of ecological niches and interactions between individuals. Furthermore, numerous movement aspects haven been proven to be crucially influenced by consistent individual differences. Considering spatial parameters could therefore crucially broaden our understanding of how individual niches are formed and ecological interactions are shaped. Furthermore, extending established concepts on species interactions by an individual component could provide new insights into how species coexistence is facilitated and local biodiversity is maintained. The main aim of this thesis was to test whether consistent inter-individual differences can facilitate the coexistence of ecological similar species. Therefore, the effects of consistent inter-individual differences on the spatial behaviour of two rodent species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius), were investigated and put in the context of: (i) individual spatial niches, (ii) interactions between species, and (iii) the importance of different levels of behavioural variation within species for their interactions. Consistent differences of study animals in boldness and exploration were quantified with the same tests in all presented studies and always combined with observations of movement and space use via automated VHF radio telemetry. Consequently, results are comparable throughout the thesis and the methods provide a common denominator for all chapters. The first two chapters are based on observations of free-ranging rodents in natural populations, while chapter III represents an experimental approach under semi-natural conditions. Chapter I focusses on the effect of consistent differences in boldness and exploration on movement and space use of bank voles and their contribution to individual spatial niche separation. Results show boldness to be the dominating predictor for spatial parameters in bank voles. Irrespective of sex, bolder individuals had larger home ranges, moved longer distances, had less spatial interactions with conspecifics and occupied different microhabitats compared to shy individuals. The same boldness-dependent spatial patterns could be observed in striped field mice which is reported in chapter II. Therefore, both study species showed individual spatial niche occupation. Chapter II builds on findings from the first chapter, investigating the effect of boldness driven individual spatial niche occupation on the interactions between species. Irrespective of species and sex, bolder individuals had more interspecific spatial interactions, but less intraspecific interactions, compared to shy individuals. Due to individual niches occupation the competitive environment individuals experience is not random. Interactions are restricted to individuals of similar behavioural type with presumably similar competitive ability, which could balance differences on the species level and support coexistence. In chapter III the experimental populations were either comprised of only shy or only bold bank voles, while striped field mice varied, creating either a shy- or bold-biased competitive community. Irrespective of behavioural type, striped field mice had more intraspecific interactions in bold-biased competitive communities. Only in a shy-biased competitive community, bolder striped field mice had less interspecific interactions compared to shy individuals. Bank voles showed no difference in intra- or interspecific interactions between populations. Chapter III highlights, that not only consistent inter-individual differences per se are important for interactions within and between species, but also the amount of behavioural variation within coexisting species. Overall, this thesis highlights the importance of considering consistent inter-individual differences in a spatial context and their connection to individual spatial niche occupation, as well as the resulting effects on interactions within and between species. Individual differences are discussed in the context of similarity of individuals, individual and species niche width, and individual and species niche overlap. Thereby, this thesis makes one step further from the existing research on individual niches towards integrating consistent inter-individual differences into the larger framework of species coexistence. N2 - Ein zentrales Thema in der Ökologie ist die Koexistenz von Arten. Zwei Aspekte sind dabei von großer Bedeutung: ökologische Nischen und zwischenartliche Konkurrenz. Das Konkurrenz-Ausschlussprinzip besagt, dass der Überlappungsgrad der Nischen zweier Arten bestimmt, wie viele Ressourcen sie teilen und damit wie stark die Konkurrenz zwischen ihnen ist. Eine stabile Koexistenz zweier Arten ist nur dann möglich, wenn ihre Nischen unterschiedlich genug sind und eine geringe Überlappung vorliegt. In diesem Fall ist die innerartliche Konkurrenz größer als die zwischenartliche, und die Bedingungen für eine langfristig stabile Koexistenz sind gegeben. Traditionell werden hierbei nur mittlere Unterschiede zwischen den Fokusarten verglichen und der Einfluss von Unterschieden zwischen Individuen nicht beachtet. Ein wesentlicher Aspekt, der die Nischendifferenzierung zwischen Tierarten beeinflusst ist deren Verhalten. Dieses ist jedoch nachweislich individuell geprägt, folglich könnte der oben erwähnte Ansatz zur Koexistenz von Arten eventuell veraltet sein. Zwischen Individuen einer Art gibt es konstante Verhaltensunterschiede, die stabil bleiben über die Zeit und zwischen verschiedenen Situationen. Ursachen und Effekte dieser Unterschiede wurden bereits in zahlreichen Tierarten untersucht, wodurch ebenfalls die Integration von individuellen Verhaltensunterschieden in das Konzept der ökologischen Nische angestoßen wurde. Aspekte der Raumnutzung von Tieren fanden hierbei bislang kaum Beachtung, obwohl sie für eine Vielzahl von Parametern, die mit Nischen in Verbindung stehen, essentiell sind. Räumliches Verhalten von Tieren wird stark durch individuelle Verhaltensunterschiede beeinflusst, weswegen es eine wichtige Rolle im Zusammenhang mit individuellen Nischen spielen sollte. Hinsichtlich der Formation individueller Nischen und ökologischer Interaktionen hat die Einbeziehung von räumlichen Aspekten das Potential entscheidende Impulse zu erbringen. Die Erweiterung bestehender Theorien zu Artinteraktionen, um eine individuelle Komponente, kann neue Einblicke schaffen wie Koexistenz zwischen Arten vermittelt und örtliche Biodiversität erhalten wird. Die hier vorliegende Arbeit befasst sich mit den Einflüssen von stabilen, individuellen Verhaltensunterschieden auf die Raumnutzung von Individuen. Dies wurde exemplarisch an zwei Nagerarten untersucht, der Rötelmaus (Myodes glareolus) und der Brandmaus (Apodemus agrarius). Dabei wird der Fokus auf die folgenden Aspekte gelegt: (i) individuelle Nischen, (ii) Interaktionen zwischen Arten, und (iii) Auswirkungen verschiedener Variationsgrade stabiler Verhaltensunterschiede auf die Interaktionen innerhalb und zwischen Arten. Alle Kapitel basieren auf der gleichen Methodik in der Datenaufnahme, da individuelle Verhaltensunterschiede stets mit dem gleichen Test quantifiziert und mit räumlichen Mustern in Zusammenhang gebracht wurden, die mit Hilfe automatischer VHF Radiotelemetrie aufgezeichnet wurden. Ergebnisse sind somit auch kapitelübergreifend vergleichbar. Kapitel eins und zwei umfassen Studien an freilebenden Nagetieren aus natürlichen Populationen, während das dritte Kapitel eine experimentelle Studie unter naturnahen Bedingungen darstellt. Das erste Kapitel handelt von den Effekten stabiler Verhaltensunterschiede in der Risikobereitschaft und dem Explorationsverhalten von Rötelmäusen auf deren Bewegungsmuster. Letztere wurden nur durch die Risikobereitschaft der Individuen beeinflusst, aber nicht durch deren Explorationsverhalten. Risikofreudigere Individuen hatten größere Streifgebiete, legten längere Strecken zurück, hatten weniger innerartliche Interaktionen und bewohnten andere Mikrohabitate als risikoscheue Individuen. Gleiche Muster konnten für die Brandmäuse gefunden werden, werden jedoch erst im zweiten Kapitel dargestellt. Beide Arten besetzen somit individuelle räumliche Nischen. Kapitel zwei baut auf dem Resultat des ersten Kapitels auf und beschäftigt sich mit den Auswirkungen von individuellen räumlichen Nischen auf die Interaktionen zwischen zwei Arten. Hierbei konnte gezeigt werden, dass unabhängig von Art und Geschlecht, risikofreudigere Individuen weniger innerartliche Interaktionen haben, dafür aber mehr zwischenartliche im Vergleich zu risikoscheuen Individuen. Die Besetzung individueller Nischen hat somit zur Folge, dass das Konkurrenz-Umfeld der Individuen abhängig von ihrem Verhaltenstyp ist. Daraus folgt, dass die Interaktionen zwischen Individuen zweier Arten beschränkt sind auf solche Individuen, die sich in ihrem Verhaltenstyp, und damit ihrer Konkurrenzkraft, ähneln. Etwaige Artunterschiede in der Konkurrenzkraft könnten dadurch ausgeglichen werden und die Koexistenz der Arten vermitteln. Im letzten Kapitel wurden experimentelle Populationen aus beiden Versuchsarten zusammengestellt. Diese unterschieden sich darin, dass die Rötelmäuse entweder ausschließlich risikoscheu oder risikobereit waren, während die Brandmäuse in ihrem Verhaltenstyp variierten. Dadurch wurden Artgemeinschaften erstellt, die entweder ein vorwiegend risikoscheues oder risikobereites Konkurrenz-Umfeld hatten. Eine reduzierte Variationsbreite der individuellen Verhaltensunterschiede in einer von zwei koexistierenden Arten führt dazu, dass sich die Interaktionsmuster innerhalb und zwischen den Arten, im Vergleich zu denen aus natürlichen Populationen verändern. Brandmäuse in einem risikobereiten Konkurrenz-Umfeld hatten mehr innerartliche Interaktionen als solche in einem risikoscheuen Konkurrenz-Umfeld, unabhängig davon ob die Brandmäuse selber risikoscheu oder risikofreudig waren. Die zwischenartlichen Interaktionen dagegen wurden nur in einem risikoscheuen Konkurrenz-Umfeld von risikobereiten Brandmäusen reduziert im Gegensatz zu risikoscheuen Individuen. Währenddessen zeigen Rötelmäuse weder in den inner- noch in den zwischenartlichen Interaktionen einen Unterschied aufgrund ihres Konkurrenz-Umfeldes. Das dritte Kapitel zeigt damit deutlich, dass nicht nur stabile individuelle Unterschiede für inner- und zwischenartliche Interaktionen von Bedeutung sind, sondern dass auch die Variationsbreite der Verhaltensunterschiede innerhalb der Arten eine entscheidende Rolle spielt. Zusammenfassend verdeutlicht die vorliegende Arbeit wie wichtig die Berücksichtigung von stabilen individuellen Verhaltensunterschieden im Hinblick auf räumliche Parameter ist. Darüber hinaus zeigen die vorliegenden Ergebnisse, dass individuelle Verhaltensunterschiede für die Besetzung individueller Nischen und damit für inner- und zwischenartlichen Interaktionen von großer Bedeutung sind. Innerhalb dieser Arbeit werden individuelle Verhaltensunterschiede in Zusammenhang mit der Ähnlichkeit von Arten, der Breite von individuellen Nischen und Artnischen, sowie deren Überlappung gebracht. Diese Arbeit stellt somit eine Erweiterung des bisherigen Forschungstandes hinsichtlich der Einbeziehung von individuellen Verhaltensunterschieden in die Theorie der Koexistenz von Arten dar. KW - ecological interactions KW - inter-individual differences KW - animal personality KW - movement ecology KW - space use Y1 - 2019 ER -