TY - JOUR A1 - Mücke, Nicole A1 - Blanchard, Gilles T1 - Parallelizing spectrally regularized kernel algorithms JF - Journal of machine learning research N2 - We consider a distributed learning approach in supervised learning for a large class of spectral regularization methods in an reproducing kernel Hilbert space (RKHS) framework. The data set of size n is partitioned into m = O (n(alpha)), alpha < 1/2, disjoint subsamples. On each subsample, some spectral regularization method (belonging to a large class, including in particular Kernel Ridge Regression, L-2-boosting and spectral cut-off) is applied. The regression function f is then estimated via simple averaging, leading to a substantial reduction in computation time. We show that minimax optimal rates of convergence are preserved if m grows sufficiently slowly (corresponding to an upper bound for alpha) as n -> infinity, depending on the smoothness assumptions on f and the intrinsic dimensionality. In spirit, the analysis relies on a classical bias/stochastic error analysis. KW - Distributed Learning KW - Spectral Regularization KW - Minimax Optimality Y1 - 2018 SN - 1532-4435 VL - 19 PB - Microtome Publishing CY - Cambridge, Mass. ER -