TY - JOUR A1 - Lange, Maik A1 - Braune, Steffen A1 - Luetzow, Karola A1 - Richau, Klaus A1 - Scharnagl, Nico A1 - Weinhart, Marie A1 - Neffe, Axel T. A1 - Jung, Friedrich A1 - Haag, Rainer A1 - Lendlein, Andreas T1 - Surface functionalization of poly(ether imide) membranes with linear, methylated oligoglycerols for reducing thrombogenicity JF - Macromolecular rapid communications N2 - Materials for biomedical applications are often chosen for their bulk properties. Other requirements such as a hemocompatible surface shall be fulfilled by suitable chemical functionalization. Here we show, that linear, side-chain methylated oligoglycerols (OGMe) are more stable to oxidation than oligo(ethylene glycol) (OEG). Poly(ether imide) (PEI) membranes functionalized with OGMes perform at least as good as, and partially better than, OEG functionalized PEI membranes in view of protein resistance as well as thrombocyte adhesion and activation. Therefore, OGMes are highly potent surface functionalizing molecules for improving the hemocompatibility of polymers. KW - hemocompatibility KW - poly(ethylene glycol) KW - polyglycerol KW - polyimides KW - surface chemistry Y1 - 2012 U6 - https://doi.org/10.1002/marc.201200426 SN - 1022-1336 VL - 33 IS - 17 SP - 1487 EP - 1492 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kim, Jiyong A1 - Kim, Yohan A1 - Park, Kyoungwon A1 - Boeffel, Christine A1 - Choi, Hyung-Seok A1 - Taubert, Andreas A1 - Wedel, Armin T1 - Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis JF - Small : nano micro N2 - The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol, is demonstrated. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis-mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD-LEDs). It is believed that this better understanding can lead to industrially feasible QD-LEDs. KW - colloidal quantum dots KW - incomplete surface passivation KW - indium KW - phosphide KW - surface chemistry KW - thiol passivation Y1 - 2022 U6 - https://doi.org/10.1002/smll.202203093 SN - 1613-6810 SN - 1613-6829 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Goebel, Ronald A1 - Hesemann, Peter A1 - Friedrich, Alwin A1 - Rothe, Regina A1 - Schlaad, Helmut A1 - Taubert, Andreas T1 - Modular thiol-ene chemistry approach towards mesoporous silica monoliths with organically modified pore walls JF - Chemistry - a European journal N2 - The surface modification of mesoporous silica monoliths through thiol-ene chemistry is reported. First, mesoporous silica monoliths with vinyl, allyl, and thiol groups were synthesized through a sol-gel hydrolysis-poly-condensation reaction from tetramethyl orthosilicate (TMOS) and vinyltriethoxysilane, allyltriethoxysilane, and (3-mercaptopropyl) trimethoxysilane, respectively. By variation of the molar ratio of the comonomers TMOS and functional silane, mesoporous silica objects containing different amounts of vinyl, allyl, and thiol groups were obtained. These intermediates can subsequently be derivatized through radical photoaddition reactions either with a thiol or an olefin, depending on the initial pore wall functionality, to yield silica monoliths with different pore-wall chemistries. Nitrogen sorption, small-angle X-ray scattering, solid-state NMR spectroscopy, elemental analysis, thermogravimetric analysis, and redox titration demonstrate that the synthetic pathway influences the morphology and pore characteristics of the resulting monoliths and also plays a significant role in the efficiency of functionalization. Moreover, the different reactivity of the vinyl and allyl groups on the pore wall affects the addition reaction, and hence, the degree of the pore-wall functionalization. This report demonstrates that thiol-ene photoaddition reactions are a versatile platform for the generation of a large variety of organically modified silica monoliths with different pore surfaces. KW - mesoporous materials KW - photochemistry KW - sol-gel processes KW - surface chemistry Y1 - 2014 U6 - https://doi.org/10.1002/chem.201403982 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 52 SP - 17579 EP - 17589 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Selective excitation of molecule-surface vibrations in H2 and D2 dissociatively adsorbed on Ru(0001) JF - Israel journal of chemistry N2 - In this contribution we report about the selective vibrational excitation of H2 and D2 on Ru(0001) as an example for nonadiabatic coupling of an open quantum system to a dissipative environment. We investigate the possibility of achieving state-selective vibrational excitations of H2 and D2 adsorbed on a Ru(0001) surface using picosecond infrared laser pulses. The systems behavior is explored using pulses that are rationally designed and others that are optimized using a time-local variant of Optimal Control Theory. The effects of dissipation on the laser-driven dynamics are studied using the reduced-density matrix formalism. The non-adiabatic couplings between adsorbate and surface are computed perturbatively, for which our recently introduced state-resolved anharmonic rate model is used. It is shown that mode- and state-selective excitation can be achieved in the absence of dissipation when using optimized laser pulses. The inclusion of dissipation in the model reduces the state selectivity and the population transfer yield to highly excited states. In this case, mode activation is most effectively realized by a rational pulse of carefully chosen duration rather than by a locally optimized pulse. KW - dissipative dynamics KW - photochemistry KW - quantum control KW - surface chemistry Y1 - 2012 U6 - https://doi.org/10.1002/ijch.201100097 SN - 0021-2148 VL - 52 IS - 5 SP - 438 EP - 451 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Quantum dynamical simulations of the femtosecond-laser-induced ultrafast desorption of H2 and D2 from Ru(0001) JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - We investigate the recombinative desorption of hydrogen and deuterium from a Ru(0001) surface initiated by femtosecond laser pulses. We adopt a quantum mechanical two-state model including three molecular degrees of freedom to describe the dynamics within the desorption induced by electronic transition (DIET) limit. The energy distributions as well as the state-resolved and ensemble properties of the desorbed molecules are analyzed in detail by using the time-energy method. Our results shed light on the experimentally observed 1) large isotopic effects regarding desorption yields and translational energies and 2) the nonequal energy partitioning into internal and translational modes. In particular, it is shown that a single temperature is sufficient to characterize the energy distributions for all degrees of freedom. Further, we confirm that quantization effects play an important role in the determination of the energy partitioning. KW - quantum dynamics KW - laser chemistry KW - isotope effects KW - surface chemistry KW - ultrafast reactions Y1 - 2013 U6 - https://doi.org/10.1002/cphc.201200940 SN - 1439-4235 VL - 14 IS - 7 SP - 1471 EP - 1478 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Fandrich, Artur A1 - Buller, Jens A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Lisdat, Fred T1 - Electrochemical detection of the thermally induced phase transition of a thin stimuli-responsive polymer film JF - ChemPhysChem : a European journal of chemical physics and physical chemistry KW - cyclic voltammetry KW - electrochemical impedance spectroscopy KW - polymers KW - surface chemistry KW - surface plasmon resonance Y1 - 2012 U6 - https://doi.org/10.1002/cphc.201100924 SN - 1439-4235 VL - 13 IS - 8 SP - 2020 EP - 2023 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Deutschmann, Claudia A1 - Roggenbuck, Dirk A1 - Schierack, Peter A1 - Rödiger, Stefan T1 - Autoantibody testing by enzyme-linked immunosorbent assay-a case in which the solid phase decides on success and failure JF - Heliyon N2 - Background: The enzyme-linked immunosorbent assay (ELISA) is an indispensable tool for clinical diagnostics to identify or differentiate diseases such as autoimmune illnesses, but also to monitor their progression or control the efficacy of drugs. One use case of ELISA is to differentiate between different states (e.g. healthy vs. diseased). Another goal is to quantitatively assess the biomarker in question, like autoantibodies. Thus, the ELISA technology is used for the discovery and verification of new autoantibodies, too. Of key interest, however, is the development of immunoassays for the sensitive and specific detection of such biomarkers at early disease stages. Therefore, users have to deal with many parameters, such as buffer systems or antigen-autoantibody interactions, to successfully establish an ELISA. Often, fine-tuning like testing of several blocking substances is performed to yield high signal-to-noise ratios.
Methods: We developed an ELISA to detect IgA and IgG autoantibodies against chitinase-3-like protein 1 (CHI3L1), a newly identified autoantigen in inflammatory bowel disease (IBD), in the serum of control and disease groups (n = 23, respectively). Microwell plates with different surface modifications (PolySorp and MaxiSorp coating) were tested to detect reproducibility problems.
Results: We found a significant impact of the surface properties of the microwell plates. IgA antibody reactivity was significantly lower, since it was in the range of background noise, when measured on MaxiSorp coated plates (p < 0.0001). The IgG antibody reactivity did not differ on the diverse plates, but the plate surface had a significant influence on the test result (p = 0.0005).
Conclusion: With this report, we want to draw readers' attention to the properties of solid phases and their effects on the detection of autoantibodies by ELISA. We want to sensitize the reader to the fact that the choice of the wrong plate can lead to a false negative test result, which in turn has serious consequences for the discovery of autoantibodies. KW - biochemistry KW - coatings KW - surface chemistry KW - immunology KW - proteins KW - laboratory medicine KW - clinical research KW - enzyme-linked immunosorbent KW - assay KW - biomarker discovery KW - reproducibility KW - solid-phase KW - autoantibody Y1 - 2020 U6 - https://doi.org/10.1016/j.heliyon.2020.e03270 SN - 2405-8440 VL - 6 IS - 1 PB - Elsevier CY - London [u.a.] ER -