TY - GEN A1 - Teif, Vladimir B. A1 - Cherstvy, Andrey G. T1 - Chromatin and epigenetics: current biophysical views T2 - AIMS biophysics N2 - Recent advances in high-throughput sequencing experiments and their theoretical descriptions have determined fast dynamics of the "chromatin and epigenetics" field, with new concepts appearing at high rate. This field includes but is not limited to the study of DNA-protein-RNA interactions, chromatin packing properties at different scales, regulation of gene expression and protein trafficking in the cell nucleus, binding site search in the crowded chromatin environment and modulation of physical interactions by covalent chemical modifications of the binding partners. The current special issue does not pretend for the full coverage of the field, but it rather aims to capture its development and provide a snapshot of the most recent concepts and approaches. Eighteen open-access articles comprising this issue provide a delicate balance between current theoretical and experimental biophysical approaches to uncover chromatin structure and understand epigenetic regulation, allowing free flow of new ideas and preliminary results. KW - chromatin KW - epigenetics KW - linker histones KW - nucleosome KW - DNA-protein binding KW - histone modifications KW - remodelers KW - topologically associated domains KW - DNA methylation KW - DNA supercoiling Y1 - 2016 U6 - https://doi.org/10.3934/biophy.2016.1.88 SN - 2377-9098 VL - 3 SP - 88 EP - 98 PB - American Institute of Mathematical Sciences CY - Springfield ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Teif, Vladimir B. T1 - Electrostatic effect of H1-histone protein binding on nucleosome repeat length JF - Physical biology : a journal for the fundamental understanding of biological systems N2 - Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells. KW - electrostatics KW - DNA KW - nucleosome Y1 - 2014 U6 - https://doi.org/10.1088/1478-3975/11/4/044001 SN - 1478-3967 SN - 1478-3975 VL - 11 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER -