TY - JOUR A1 - Bsdok, Barbara A1 - Altenberger, Uwe A1 - Concha-Perdomo, Ana Elena A1 - Wilke, Franziska Daniela Helena A1 - Gil-Rodriguez, J. G. T1 - The Santa Rosa de Viterbo meteorite, Colombia BT - New work on it's petrological, geochemical and economical characterization JF - Journal of South American earth sciences N2 - Undifferentiated meteorites, like primitive chondrites, can contain presolar and solar nebula materials which would provide information about the origin and initial conditions of the solar system, whereas differentiated meteorites like iron meteorites, can show early phases of planetary accretion. They also provide the possibility to receive information about core properties and planetary bodies. In addition to the gain in such fundamental scientific knowledge both types are of interest for the exploration of critical raw materials (CRMs) and precious elements. The Santa Rosa de Viterbo meteorite shower, discovered 1810 in the Boyaca province of Colombia, represents a typical iron-nickel meteorite. The present study presents new structural, textural and geochemical results of one fragment of this meteorite, using reflecting microscopy, electron probe micro analyses (EPMA) and electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The present study presents trace element concentrations of the meteorite's minerals for the first time. The sample is dominated by kamacite (alpha-FeNi). Schreibersite (FeNi3P), taenite (gamma-FeNi) and plessite (mixture of kamacite and taenite) are minor constituents. The occurrence of cohenite ((Fe,Ni,Co)(3)C) and troilite (FeS) are likely. The meteorite sample contains classical Neuman bands passing through kamacite and frequent Widmanstadtten pattern. The bandwidth of kamacite defines the meteorite as finest octahedrite. Geochemically, it is characterized as a "Type IC meteorite". While improving the characterization and classification of the Santa Rosa de Viterbo Iron Meteorite, notable concentrations of Au (>400 ppm) and Ge (>230 ppm) alongside major elements such as Fe, Ni and Co in the bulk composition of that meteorite, were proven. Major and rock-forming minerals such as kamacite and taenite incorporate hundreds of ppm of Ge whereas schreibersite, itself a minor component in that particular meteorite, is the major source for Au (>1400 ppm). In kamacite and taenite also Ir, Pd and Ga were found in minor amounts. Nano-scale inclusions or atomic clusters called nano-nuggets may have been responsible for the high concentrations of Au, Ir, Pd and Ga. Raman and Laser-induced plasma spectroscopes installed in in space probes seems suitable exploration methods for Fe-Ni meteorites, containing Ni-concentrations > 5.8 wt% defining the meteorite as octaedrites. KW - Fe-Ni-Meteorite KW - Geochemistry KW - Colombia KW - Gold KW - Rare elements KW - Space mining Y1 - 2020 U6 - https://doi.org/10.1016/j.jsames.2020.102779 SN - 0895-9811 VL - 104 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Pudell, Jan-Etienne A1 - Stete, Felix A1 - Rössle, Matthias A1 - Herzog, Marc A1 - Schmitt, Clemens Nikolaus Zeno A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - Scaling up nanoplasmon catalysis BT - the role of heat dissipation JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Nanoscale heating by optical excitation of plasmonic nanoparticles offers a new perspective of controlling chemical reactions, where heat is not spatially uniform as in conventional macroscopic heating but strong temperature gradients exist around microscopic hot spots. In nanoplasmonics, metal particles act as a nanosource of light, heat, and energetic electrons driven by resonant excitation of their localized surface plasmon resonance. As an example of the coupling reaction of 4-nitrothiophenol into 4,4′-dimercaptoazobenzene, we show that besides the nanoscopic heat distribution at hot spots, the microscopic distribution of heat dictated by the spot size of the light focus also plays a crucial role in the design of plasmonic nanoreactors. Small sizes of laser spots enable high intensities to drive plasmon-assisted catalysis. This facilitates the observation of such reactions by surface-enhanced Raman scattering, but it challenges attempts to scale nanoplasmonic chemistry up to large areas, where the excess heat must be dissipated by one-dimensional heat transport. KW - Gold KW - Raman spectroscopy KW - Silicon KW - Irradiation KW - Lasers Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpcc.8b12574 SN - 1932-7447 VL - 123 IS - 14 SP - 9352 EP - 9357 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cui, Qianling A1 - Xia, Bihua A1 - Mitzscherling, Steffen A1 - Masic, Admir A1 - Li, Lidong A1 - Bargheer, Matias A1 - Moehwald, Helmuth T1 - Preparation of gold nanostars and their study in selective catalytic reactions JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - In this work, gold nanostars (AuNSs) with size around 90 nm were prepared through an easy one-step method. They show excellent catalytic activity and large surface-enhanced Raman scattering (SERS) activity at the same time. Surprisingly, they exhibited different catalytic performance on the reduction of aromatic nitro compounds with different substituents on the para position. To understand such a difference, the SERS spectra were recorded, showing that the molecular orientation of reactants on the gold surface were different. We anticipate that this research will help to understand the relationship of the molecular orientation with the catalytic activity of gold nanoparticles. KW - Nanoparticles KW - Gold KW - Catalytic reaction KW - Surface enhanced Raman scattering (SERS) KW - Molecular orientation Y1 - 2015 U6 - https://doi.org/10.1016/j.colsurfa.2014.10.028 SN - 0927-7757 SN - 1873-4359 VL - 465 SP - 20 EP - 25 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vidadala, Srinivasa Rao A1 - Pimpalpalle, Tukaram M. A1 - Linker, Torsten A1 - Hotha, Srinivas T1 - Gold-Catalyzed reactions of 2-C-Branched carbohydrates mild glycosidations and selective anomerizations JF - European journal of organic chemistry N2 - 2-C-branched methyl glycosides react with various alcohols under gold catalysis to transglycosylated products. The method is applicable for the convenient synthesis of disaccharides. Without nucleophile a selective anomerization occurs, giving first access to alpha-configured 2-C-nitromethyl glycosides. The results are interesting for the mechanism of gold-catalyzed glycosidations. KW - Anomerization KW - Carbohydrates KW - Glycosidation KW - Gold KW - Synthetic methods Y1 - 2011 U6 - https://doi.org/10.1002/ejoc.201100134 SN - 1434-193X IS - 13 SP - 2426 EP - 2430 PB - Wiley-Blackwell CY - Malden ER -