TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kirpichenko, Svetlana V. A1 - Kleinpeter, Erich T1 - Stereochemistry of 3-isopropoxy-3-methyl-1,3-oxasilinane-the first 3-silatetrahydropyran with an exo-cyclic RO-Si bond JF - Tetrahedron N2 - Molecular structure and conformational behavior of 3-isopropoxy-3-methyl-3-oxasilinane is studied by low temperature C-13 NMR spectroscopy and theoretical calculations (DFT, MP2). Two conformers, 1-ROax and 1-ROeq, were found experimentally and located on the potential energy surface. LT C-13 NMR spectroscopy gives almost equal population of the two conformers at 98 K with Delta G(98K)degrees=0.02 kcal/mol in favor of 1-ROax and Delta G(98K)(#)=4.5 kcal/mol. The corresponding DFT calculated values (Delta G(98K)degrees=0.03 kcal/mol, Delta G(98K)(#)=5.1 kcal/mol) are in excellent agreement with the experiment. Detailed DFT and MP2 calculations of the solvent effect on the conformational equilibrium were performed and highlighted the leveling out of the two conformers when transferred from gas to solution. (C) 2015 Published by Elsevier Ltd. KW - 1,3-Oxasilinanes KW - Conformational equilibrium KW - Barrier to ring inversion KW - Solvent effects KW - Assignment of stereochemistry Y1 - 2015 U6 - https://doi.org/10.1016/j.tet.2015.07.047 SN - 0040-4020 VL - 71 IS - 38 SP - 6720 EP - 6726 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Moskalik, Mikhail Yu A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich T1 - Conformational equilibrium and dynamic behavior of bis-N-triflyl substituted 3,8-diazabicyclo[3.2.1]octane JF - Magnetic resonance in chemistry N2 - Restricted rotation about the N-S partial double bonds in a bis-N-triflyl substituted 3,8-diazabicyclo[3.2.1]octane derivative 1 has been frozen at low temperature (Delta G* = 11.6 kcal mol(-1)), and the existence of all four rotamers about the two N-S bonds, 3-in, 8-in, 3-in, 8-out, 3-out, 8-in, and 3-out, 8-out, respectively, proved experimentally by NMR spectroscopy and theoretically by DFT and MP2 calculations. Copyright (C) 2014 John Wiley & Sons, Ltd. KW - NMR KW - H-1 KW - C-13 KW - F-19 KW - Dynamic NMR KW - Conformational equilibrium KW - restricted N-S rotation Y1 - 2014 U6 - https://doi.org/10.1002/mrc.4086 SN - 0749-1581 SN - 1097-458X VL - 52 IS - 8 SP - 448 EP - 452 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kleinpeter, Erich T1 - Silacyclohexanes and silaheterocyclohexanes-why are they so different from other heterocyclohexanes? JF - Tetrahedron N2 - Stereochemical studies on silaheterocyclohexanes is a 'hot topic' as evidenced by the growing number of publications. During last 10 years a substantial number of substituted silacyclohexanes and heterocyclohexanes containing sulfur, oxygen or nitrogen as the second (or third) heteroatom have been synthesized and studied by variable temperature dynamic NMR spectroscopy, gas-phase electron diffraction, variable temperature IR, Raman, microwave spectroscopy with respect to thermodynamic (frozen conformational equilibria) and kinetic (barrier to ring inversion) information. As the stereochemistry of cyclohexane and its N-, O-, P-, S-hetero analogues is one of keystones of modern theoretical and synthetic organic and heterocyclic chemistry, the stereochemistry of silacyclohexane and its hetero analogs is an important element of theoretical and synthetic organosilicon chemistry. The various classes of saturated six-membered rings were critically compared and studied in detail with respect to differences in their stereochemistry and dynamic behavior. KW - Silacyclohexanes KW - Silaheterocyclohexanes KW - Conformational equilibrium KW - Barrier to ring inversion KW - Steric effects KW - Electrostatic effects Y1 - 2013 U6 - https://doi.org/10.1016/j.tet.2013.04.126 SN - 0040-4020 VL - 69 IS - 29 SP - 5927 EP - 5936 PB - Elsevier CY - Oxford ER -