TY - JOUR A1 - Cywinski, Piotr J. A1 - Moro, Artur J. A1 - Ritschel, Thomas A1 - Hildebrandt, Niko A1 - Löhmannsröben, Hans-Gerd T1 - Sensitive and selective fluorescence detection of guanosine nucleotides by nanoparticles conjugated with a naphthyridine receptor JF - Analytical & bioanalytical chemistry N2 - Novel fluorescent nanosensors, based on a naphthyridine receptor, have been developed for the detection of guanosine nucleotides, and both their sensitivity and selectivity to various nucleotides were evaluated. The nanosensors were constructed from polystyrene nanoparticles functionalized by (N-(7-((3-aminophenyl) ethynyl)-1,8-naphthyridin- 2-yl) acetamide) via carbodiimide ester activation. We show that this naphthyridine nanosensor binds guanosine nucleotides preferentially over adenine, cytosine, and thymidine nucleotides. Upon interaction with nucleotides, the fluorescence of the nanosensor is gradually quenched yielding Stern-Volmer constants in the range of 2.1 to 35.9mM(-1). For all the studied quenchers, limits of detection (LOD) and tolerance levels for the nanosensors were also determined. The lowest (3 sigma) LOD was found for guanosine 3',5'-cyclic monophosphate (cGMP) and it was as low as 150 ng/ml. In addition, we demonstrated that the spatial arrangement of bound analytes on the nanosensors' surfaces is what is responsible for their selectivity to different guanosine nucleotides. We found a correlation between the changes of the fluorescence signal and the number of phosphate groups of a nucleotide. Results of molecular modeling and zeta-potential measurements confirm that the arrangement of analytes on the surface provides for the selectivity of the nanosensors. These fluorescent nanosensors have the potential to be applied in multi-analyte, array-based detection platforms, as well as in multiplexed microfluidic systems. KW - Naphthyridine receptor KW - cGMP KW - Base pairing KW - Nucleotide nanosensor KW - Fluorescence spectroscopy Y1 - 2011 U6 - https://doi.org/10.1007/s00216-010-4420-2 SN - 1618-2642 VL - 399 IS - 3 SP - 1215 EP - 1222 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Idzik, Krzysztof Ryszard A1 - Cywinski, Piotr J. A1 - Cranfield, Charles G. A1 - Mohr, Gerhard J. A1 - Beckert, Rainer T1 - Molecular recognition of the antiretroviral drug abacavir towards the development of a novel carbazole-based fluorosensor JF - Journal of fluorescence N2 - Due to their optical and electro-conductive attributes, carbazole derivatives are interesting materials for a large range of biosensor applications. In this study, we present the synthesis routes and fluorescence evaluation of newly designed carbazole fluorosensors that, by modification with uracil, have a special affinity for antiretroviral drugs via either Watson-Crick or Hoogsteen base pairing. To an N-octylcarbazole-uracil compound, four different groups were attached, namely thiophene, furane, ethylenedioxythiophene, and another uracil; yielding four different derivatives. Photophysical properties of these newly obtained derivatives are described, as are their interactions with the reverse transcriptase inhibitors such as abacavir, zidovudine, lamivudine and didanosine. The influence of each analyte on biosensor fluorescence was assessed on the basis of the Stern-Volmer equation and represented by Stern-Volmer constants. Consequently we have demonstrated that these structures based on carbazole, with a uracil group, may be successfully incorporated into alternative carbazole derivatives to form biosensors for the molecular recognition of antiretroviral drugs. KW - HIV KW - HAART KW - Antiretroviral drugs KW - Carbazole KW - Base pairing KW - Fluorescence spectroscopy Y1 - 2011 U6 - https://doi.org/10.1007/s10895-010-0798-7 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 1195 EP - 1204 PB - Springer CY - New York ER - TY - GEN A1 - Meiling, Till Thomas A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 264 KW - Fluorescence spectroscopy KW - Nanoparticles KW - Synthesis and processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97087 ER - TY - JOUR A1 - Meiling, Till Thomas A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. KW - Fluorescence spectroscopy KW - Nanoparticles KW - Synthesis and processing Y1 - 2016 U6 - https://doi.org/10.1038/srep28557 VL - 6 PB - Nature Publishing Group CY - London ER - TY - GEN A1 - Jahn, Karolina A1 - Buschmann, Volker A1 - Hille, Carsten T1 - Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells N2 - In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 202 KW - Confocal microscopy KW - Fluorescence imaging KW - Fluorescence spectroscopy KW - Fluorescent probes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82156 ER - TY - JOUR A1 - Jahn, Karolina A1 - Buschmann, Volker A1 - Hille, Carsten T1 - Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells JF - Scientific Reports N2 - In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. KW - Confocal microscopy KW - Fluorescence imaging KW - Fluorescence spectroscopy KW - Fluorescent probes Y1 - 2015 U6 - https://doi.org/10.1038/srep14334 SN - 2045-2322 IS - 5 PB - Nature Publishing Group CY - London ER -