TY - JOUR A1 - Gruner, David A1 - Barnes, Sydney A. T1 - Rotation periods for cool stars in the open cluster Ruprecht 147 (NGC 6774) Implications for gyrochronology JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Gyrochronology allows the derivation of ages for cool main sequence stars based on their observed rotation periods and masses, or a suitable proxy thereof. It is increasingly well-explored for FGK stars, but requires further measurements for older ages and K - M-type stars. Aims: We study the 2.7 Gyr-old open cluster Ruprecht 147 to compare it with the previously-studied, but far more distant, NGC 6819 cluster, and especially to measure cooler stars than was previously possible there. Methods: We constructed an inclusive list of 102 cluster members from prior work, including Gaia DR2, and for which light curves were also obtained during Campaign 7 of the Kepler/K2 space mission. We placed them in the cluster color-magnitude diagram and checked the related information against appropriate isochrones. The light curves were then corrected for data systematics using Principal Component Analysis on all observed K2 C07 stars and subsequently subjected to periodicity analysis. Results: Periodic signals are found for 32 stars, 21 of which are considered to be both highly reliable and to represent single, or effectively single, Ru 147 stars. These stars cover the spectral types from late-F to mid-M stars, and they have periods ranging from 6 d - 33 d, allowing for a comparison of Ruprecht 147 to both other open clusters and to models of rotational spindown. The derived rotation periods connect reasonably to, overlap with, and extend to lower masses the known rotation period distribution of the 2.5 Gyr-old cluster NGC 6819. Conclusions: The data confirm that cool stars lie on a single surface in rotation period-mass-age space, and they simultaneously challenge its commonly assumed shape. The shape at the low mass region of the color-period diagram at the age of Ru 147 favors a recently-proposed model which requires a third mass-dependent timescale in addition to the two timescales required by a former model, suggesting that a third physical process is required to model rotating stars effectively. KW - stars: late-type KW - stars: low-mass KW - stars: rotation KW - stars: solar-type Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038984 SN - 0004-6361 SN - 1432-0746 VL - 644 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ramiaramanantsoa, Tahina A1 - Moffat, Anthony F. J. A1 - Harmon, Robert A1 - Ignace, R. A1 - St-Louis, Nicole A1 - Vanbeveren, Dany A1 - Shenar, Tomer A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Howarth, Ian D. A1 - Stevens, Ian R. A1 - Piaulet, Caroline A1 - St-Jean, Lucas A1 - Eversberg, Thomas A1 - Pigulski, Andrzej A1 - Popowicz, Adam A1 - Kuschnig, Rainer A1 - Zoclonska, Elzbieta A1 - Buysschaert, Bram A1 - Handler, Gerald A1 - Weiss, Werner W. A1 - Wade, Gregg A. A1 - Rucinski, Slavek M. A1 - Zwintz, Konstanze A1 - Luckas, Paul A1 - Heathcote, Bernard A1 - Cacella, Paulo A1 - Powles, Jonathan A1 - Locke, Malcolm A1 - Bohlsen, Terry A1 - Chené, André-Nicolas A1 - Miszalski, Brent A1 - Waldron, Wayne L. A1 - Kotze, Marissa M. A1 - Kotze, Enrico J. A1 - Böhm, Torsten T1 - BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant zeta Puppis unveils the photospheric drivers of its small- and large-scale wind structures JF - Monthly notices of the Royal Astronomical Society N2 - From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability. KW - techniques: photometric KW - techniques: spectroscopic KW - stars: massive KW - stars: rotation KW - starspots KW - supergiants KW - stars: winds, outflows Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx2671 SN - 0035-8711 SN - 1365-2966 VL - 473 IS - 4 SP - 5532 EP - 5569 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kurfürst, P. A1 - Feldmeier, Achim A1 - Krticka, Jiri T1 - Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example. KW - stars: massive KW - stars: mass-loss KW - stars: winds, outflows KW - stars: evolution KW - stars: rotation KW - hydrodynamics Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731300 SN - 1432-0746 VL - 613 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kubatova, Brankica A1 - Szecsi, D. A1 - Sander, Andreas Alexander Christoph A1 - Kubat, Jiří A1 - Tramper, F. A1 - Krticka, Jiri A1 - Kehrig, C. A1 - Hamann, Wolf-Rainer A1 - Hainich, Rainer A1 - Shenar, Tomer T1 - Low-metallicity massive single stars with rotation BT - II. Predicting spectra and spectral classes of chemically homogeneously evolving stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Metal-poor massive stars are assumed to be progenitors of certain supernovae, gamma-ray bursts, and compact object mergers that might contribute to the early epochs of the Universe with their strong ionizing radiation. However, this assumption remains mainly theoretical because individual spectroscopic observations of such objects have rarely been carried out below the metallicity of the Small Magellanic Cloud. Aims. Here we explore the predictions of the state-of-the-art theories of stellar evolution combined with those of stellar atmospheres about a certain type of metal-poor (0.02 Z(circle dot)) hot massive stars, the chemically homogeneously evolving stars that we call Transparent Wind Ultraviolet INtense (TWUIN) stars. Methods. We computed synthetic spectra corresponding to a broad range in masses (20 130 M-circle dot) and covering several evolutionary phases from the zero-age main-sequence up to the core helium-burning stage. We investigated the influence of mass loss and wind clumping on spectral appearance and classified the spectra according to the Morgan-Keenan (MK) system. Results. We find that TWUIN stars show almost no emission lines during most of their core hydrogen-burning lifetimes. Most metal lines are completely absent, including nitrogen. During their core helium-burning stage, lines switch to emission, and even some metal lines (oxygen and carbon, but still almost no nitrogen) are detected. Mass loss and clumping play a significant role in line formation in later evolutionary phases, particularly during core helium-burning. Most of our spectra are classified as an early-O type giant or supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning phase. Conclusions. An extremely hot, early-O type star observed in a low-metallicity galaxy could be the result of chemically homogeneous evolution and might therefore be the progenitor of a long-duration gamma-ray burst or a type Ic supernova. TWUIN stars may play an important role in reionizing the Universe because they are hot without showing prominent emission lines during most of their lifetime. KW - stars: massive KW - stars: winds, outflows KW - stars: rotation KW - galaxies: dwarf KW - radiative transfer Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834360 SN - 1432-0746 SN - 0004-6361 VL - 623 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Rüdiger, Günther A1 - Küker, Manfred A1 - Kapyla, P. J. A1 - Strassmeier, Klaus G. T1 - Antisolar differential rotation of slowly rotating cool stars JF - Astronomy and astrophysics : an international weekly journal N2 - Rotating stellar convection transports angular momentum towards the equator, generating the characteristic equatorial acceleration of the solar rotation while the radial flux of angular momentum is always inwards. New numerical box simulations for the meridional cross-correlation < u(theta)u(phi)>, however, reveal the angular momentum transport towards the poles for slow rotation and towards the equator for fast rotation. The explanation is that for slow rotation a negative radial gradient of the angular velocity always appears, which in combination with a so-far neglected rotation-induced off-diagonal eddy viscosity term nu(perpendicular to) provides "antisolar rotation" laws with a decelerated equator Similarly, the simulations provided positive values for the rotation-induced correlation < u(r)u(theta)>, which is relevant for the resulting latitudinal temperature profiles (cool or warm poles) for slow rotation and negative values for fast rotation. Observations of the differential rotation of slowly rotating stars will therefore lead to a better understanding of the actual stress-strain relation, the heat transport, and the underlying model of the rotating convection. KW - stars: solar-type KW - convection KW - stars: rotation KW - turbulence Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935280 SN - 1432-0746 VL - 630 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Boehm, Thorsten A1 - Holschneider, Matthias A1 - Lignieres, Frederic A1 - Petit, Pascal A1 - Rainer, Monica A1 - Paletou, Francois A1 - Wade, Gregg A1 - Alecian, Evelyne A1 - Carfantan, Herve A1 - Blazere, Aurore A1 - Mirouh, Giovanni M. T1 - Discovery of starspots on Vega First spectroscopic detection of surface structures on a normal A-type star JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims. The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods. Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895 6270 angstrom. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a T-eff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results. We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes Delta F/Fc similar to 5 x 10(-4). A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower equatorial latitudes. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked to explain the existence of activity tracing starspots. At this stage it is difficult to disentangle a rotational from a stellar pulsational origin for the existing higher frequency periodic variations. Conclusions. This first strong evidence that standard A-type stars can show surface structures opens a new field of research and ask about a potential link with the recently discovered weak magnetic field discoveries in this category of stars. KW - starspots KW - stars: early-type KW - stars: rotation KW - stars: oscillations KW - stars: individual: Vega KW - asteroseismology Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425425 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Hamann, Wolf-Rainer A1 - Todt, Helge Tobias T1 - The impact of rotation on the line profiles of Wolf-Rayet stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Massive Wolf-Rayet stars are recognized today to be in a very common, but short, evolutionary phase of massive stars. While our understanding of Wolf-Rayet stars has increased dramatically over the past decades, it remains unclear whether rapid rotators are among them. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. However, recently observed spectra of several Wolf-Rayet stars reveal peculiarly broad and round emission lines. Could these spectra imply rapid rotation? Aims. In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may be explained with the help of stellar rotation, infer appropriate rotation parameters, and discuss the implications of our results. Methods. We make use of the Potsdam Wolf-Rayet (PoWR) non-LTE model atmosphere code. Since the observed spectra of WolfRayet stars are mainly formed in their expanding atmospheres, rotation must be accounted for with a 3D integration scheme of the formal integral. For this purpose, we assume a rotational velocity field consisting of an inner co-rotating domain and an outer domain, where the angular momentum is conserved. Results. We find that rotation can reproduce the unique spectra analyzed here. However, the inferred rotational velocities at the stellar surface are large (similar to 200 km s(-1)), and the inferred co-rotation radii (similar to 10R.) suggest the existence of very strong photospheric magnetic fields (similar to 20 kG). KW - stars: Wolf-Rayet KW - Magellanic Clouds KW - stars: magnetic field KW - stars: massive KW - gamma-ray burst: general KW - stars: rotation Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201322496 SN - 0004-6361 SN - 1432-0746 VL - 562 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kurfuerst, P. A1 - Feldmeier, Achim A1 - Krticka, Jiri T1 - Time-dependent modeling of extended thin decretion disks of critically rotating stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. During their evolution massive stars can reach the phase of critical rotation when a further increase in rotational speed is no longer possible. Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. Aims. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. Methods. We calculated stationary models using the Newton-Raphson method. For time-dependent hydrodynamic modeling we developed the numerical code based on an explicit finite difference scheme on an Eulerian grid including full Navier-Stokes shear viscosity. Results. The sonic point distance and the maximum angular momentum loss rate strongly depend on the temperature profile and are almost independent of viscosity. The rotational velocity at large radii rapidly drops accordingly to temperature and viscosity distribution. The total amount of disk mass and the disk angular momentum increase with decreasing temperature and viscosity. Conclusions. The time-dependent one-dimensional models basically confirm the results obtained in the stationary models as well as the assumptions of the analytical approximations. Including full Navier-Stokes viscosity we systematically avoid the rotational velocity sign change at large radii. The unphysical drop of the rotational velocity and angular momentum loss at large radii (present in some models) can be avoided in the models with decreasing temperature and viscosity. KW - stars: mass-loss KW - stars: evolution KW - stars: rotation KW - hydrodynamics Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201424272 SN - 0004-6361 SN - 1432-0746 VL - 569 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Meibom, S. A1 - Barnes, Sydney A. A1 - Covey, K. A1 - Jeffries, R. D. A1 - Matt, S. A1 - Morin, J. A1 - Palacios, A. A1 - Reiners, A. A1 - Sicilia-Aguilar, A. A1 - Irwin, J. T1 - Angular momentum evolution of cool stars: Toward a synthesis of observations and theory before and after the ZAMS JF - Astronomische Nachrichten = Astronomical notes N2 - The coexistence of fast and slowly rotating cool stars in ZAMS clusters - forming distinct sequences in the color vs. rotation period plane - is providing clues to differences in their pre main-sequence angular momentum evolution. This Cool Stars 17 splinter was dedicated to a discussion of new observational and theoretical results that may help discriminate between proposed mechanisms for early angular momentum regulation and help us explain the observed ZAMS dichotomy. KW - circumstellar matter KW - stars: late-type KW - stars: magnetic fields KW - stars: pre-main sequence KW - stars: rotation Y1 - 2013 U6 - https://doi.org/10.1002/asna.201211777 SN - 0004-6337 SN - 1521-3994 VL - 334 IS - 1-2 SP - 168 EP - 171 PB - Wiley-VCH CY - Weinheim ER -