TY - JOUR A1 - Macdonald, Elena A1 - Merz, Bruno A1 - Guse, Björn A1 - Wietzke, Luzie A1 - Ullrich, Sophie A1 - Kemter, Matthias A1 - Ahrens, Bodo A1 - Vorogushyn, Sergiy T1 - Event and catchment controls of heavy tail behavior of floods JF - Water resources research N2 - In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for general conclusions. We compile a wide range of event and catchment characteristics and investigate their association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different aggregations of event characteristics, multiple linear regression models, as well as random forests, are constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality, and catchment size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it does influence flood magnitudes. KW - heavy tail behavior KW - floods KW - event characteristics KW - catchment KW - characteristics KW - catchment response Y1 - 2022 U6 - https://doi.org/10.1029/2021WR031260 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Jing, Miao A1 - Kumar, Rohini A1 - Heße, Falk A1 - Thober, Stephan A1 - Rakovec, Oldrich A1 - Samaniego, Luis A1 - Attinger, Sabine T1 - Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Groundwater is the biggest single source of high-quality freshwater worldwide, which is also continuously threatened by the changing climate. In this paper, we investigate the response of the regional groundwater system to climate change under three global warming levels (1.5, 2, and 3 ∘C) in a central German basin (Nägelstedt). This investigation is conducted by deploying an integrated modeling workflow that consists of a mesoscale hydrologic model (mHM) and a fully distributed groundwater model, OpenGeoSys (OGS). mHM is forced with climate simulations of five general circulation models under three representative concentration pathways. The diffuse recharges estimated by mHM are used as boundary forcings to the OGS groundwater model to compute changes in groundwater levels and travel time distributions. Simulation results indicate that groundwater recharges and levels are expected to increase slightly under future climate scenarios. Meanwhile, the mean travel time is expected to decrease compared to the historical average. However, the ensemble simulations do not all agree on the sign of relative change. Changes in mean travel time exhibit a larger variability than those in groundwater levels. The ensemble simulations do not show a systematic relationship between the projected change (in both groundwater levels and travel times) and the warming level, but they indicate an increased variability in projected changes with adjusting the enhanced warming level from 1.5 to 3 ∘C. Correspondingly, it is highly recommended to restrain the trend of global warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1402 KW - climate change impacts KW - hydrological models KW - coupled surface KW - water fluxes KW - catchment KW - recharge KW - dynamics KW - aquifer KW - flow KW - parameterization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509343 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Jing, Miao A1 - Kumar, Rohini A1 - Heße, Falk A1 - Thober, Stephan A1 - Rakovec, Oldrich A1 - Samaniego, Luis A1 - Attinger, Sabine T1 - Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin JF - Hydrology and Earth System Sciences N2 - Groundwater is the biggest single source of high-quality freshwater worldwide, which is also continuously threatened by the changing climate. In this paper, we investigate the response of the regional groundwater system to climate change under three global warming levels (1.5, 2, and 3 ∘C) in a central German basin (Nägelstedt). This investigation is conducted by deploying an integrated modeling workflow that consists of a mesoscale hydrologic model (mHM) and a fully distributed groundwater model, OpenGeoSys (OGS). mHM is forced with climate simulations of five general circulation models under three representative concentration pathways. The diffuse recharges estimated by mHM are used as boundary forcings to the OGS groundwater model to compute changes in groundwater levels and travel time distributions. Simulation results indicate that groundwater recharges and levels are expected to increase slightly under future climate scenarios. Meanwhile, the mean travel time is expected to decrease compared to the historical average. However, the ensemble simulations do not all agree on the sign of relative change. Changes in mean travel time exhibit a larger variability than those in groundwater levels. The ensemble simulations do not show a systematic relationship between the projected change (in both groundwater levels and travel times) and the warming level, but they indicate an increased variability in projected changes with adjusting the enhanced warming level from 1.5 to 3 ∘C. Correspondingly, it is highly recommended to restrain the trend of global warming. KW - climate change impacts KW - hydrological models KW - coupled surface KW - water fluxes KW - catchment KW - recharge KW - dynamics KW - aquifer KW - flow KW - parameterization Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-1511-2020 SN - 1607-7938 SN - 1027-5606 VL - 24 IS - 3 SP - 1511 EP - 1526 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Tolorza, Violeta A1 - Mohr, Christian Heinrich A1 - Carretier, Sebastien A1 - Serey, Amador A1 - Sepulveda, Sergio A. A1 - Tapia, Joseline A1 - Pinto, Luisa T1 - Suspended sediments in chilean rivers reveal low postseismic erosion after the maule earthquake (Mw 8.8) during a severe drought JF - Journal of geophysical research : Earth surface N2 - We address the question of whether all large-magnitude earthquakes produce an erosion peak in the subaerial components of fluvial catchments. We evaluate the sediment flux response to the Maule earthquake in the Chilean Andes (Mw 8.8) using daily suspended sediment records from 31 river gauges. The catchments cover drainage areas of 350 to around 10,000 km(2), including a wide range of topographic slopes and vegetation cover of the Andean western flank. We compare the 3- to 8-year postseismic record of sediment flux to each of the following preseismic periods: (1) all preseismic data, (2) a 3-year period prior to the seismic event, and (3) the driest preseismic periods, as drought conditions prevailed in the postseismic period. Following the earthquake, no increases in suspended sediment flux were observed for moderate to high percentiles of the streamflow distribution (mean, median, and >= 75th percentile). However, more than half of the examined stations showed increased sediment flux during baseflow. By using a Random Forest approach, we evaluate the contributions of seismic intensities, peak ground accelerations, co-seismic landslides, hydroclimatic conditions, topography, lithology, and land cover to explain the observed changes in suspended sediment concentration and fluxes. We find that the best predictors are hillslope gradient, low-vegetation cover, and changes in streamflow discharge. This finding suggests a combined first-order control of topography, land cover, and hydrology on the catchment-wide erosion response. We infer a reduced sediment connectivity due to the postseismic drought, which increased the residence time of sediment detached and remobilized following the Maule earthquake. KW - earthquake KW - suspended sediment KW - Maule megathrust KW - Chile KW - catchment Y1 - 2019 U6 - https://doi.org/10.1029/2018JF004766 SN - 2169-9003 SN - 2169-9011 VL - 124 IS - 6 SP - 1378 EP - 1397 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Skinner, Christopher J. A1 - Coulthard, Tom J. A1 - Schwanghart, Wolfgang A1 - Van De Wiel, Marco J. A1 - Hancock, Greg T1 - Global sensitivity analysis of parameter uncertainty in landscape evolution models T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The evaluation and verification of landscape evolution models (LEMs) has long been limited by a lack of suitable observational data and statistical measures which can fully capture the complexity of landscape changes. This lack of data limits the use of objective function based evaluation prolific in other modelling fields, and restricts the application of sensitivity analyses in the models and the consequent assessment of model uncertainties. To overcome this deficiency, a novel model function approach has been developed, with each model function representing an aspect of model behaviour, which allows for the application of sensitivity analyses. The model function approach is used to assess the relative sensitivity of the CAESAR-Lisflood LEM to a set of model parameters by applying the Morris method sensitivity analysis for two contrasting catchments. The test revealed that the model was most sensitive to the choice of the sediment transport formula for both catchments, and that each parameter influenced model behaviours differently, with model functions relating to internal geomorphic changes responding in a different way to those relating to the sediment yields from the catchment outlet. The model functions proved useful for providing a way of evaluating the sensitivity of LEMs in the absence of data and methods for an objective function approach. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1084 KW - self-organized criticality KW - rainfall variability KW - sediment transport KW - periglacial engine KW - hydraulic models KW - numerical models KW - mountain erosion KW - river KW - catchment KW - scale Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468013 SN - 1866-8372 IS - 1084 SP - 4873 EP - 4888 ER - TY - GEN A1 - Metin, Ayse Duha A1 - Dung, Nguyen Viet A1 - Schröter, Kai A1 - Guse, Björn A1 - Apel, Heiko A1 - Kreibich, Heidi A1 - Vorogushyn, Sergiy A1 - Merz, Bruno T1 - How do changes along the risk chain affect flood risk? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1067 KW - global sensitivity analysis KW - climate change KW - river floods KW - frequency KW - Europe KW - model KW - vulnerability KW - adaptation KW - strategies KW - catchment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468790 SN - 1866-8372 IS - 1067 ER - TY - GEN A1 - Jing, Miao A1 - Heße, Falk A1 - Kumar, Rohini A1 - Wang, Wenqing A1 - Fischer, Thomas A1 - Walther, Marc A1 - Zink, Matthias A1 - Zech, Alraune A1 - Samaniego, Luis A1 - Kolditz, Olaf A1 - Attinger, Sabine T1 - Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nagelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 851 KW - travel-time distributions KW - surface-water KW - land-surface KW - surface/subsurface flow KW - parameter-estimation KW - subsurface flow KW - transport model KW - climate-change KW - river-basins KW - catchment Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427030 SN - 1866-8372 IS - 851 SP - 1989 EP - 2007 ER - TY - GEN A1 - Angermann, Lisa A1 - Jackisch, Conrad A1 - Allroggen, Niklas A1 - Sprenger, Matthias A1 - Zehe, Erwin A1 - Tronicke, Jens A1 - Weiler, Markus A1 - Blume, Theresa T1 - Form and function in hillslope hydrology BT - characterization of subsurface flow based on response observations T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 658 KW - ground-penetrating radar KW - preferential flow KW - water-flow KW - runoff generation KW - vadose zone KW - catchment KW - scale KW - tracer KW - time KW - pore Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419161 SN - 1866-8372 IS - 658 ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Coppus, Ruben A1 - Iroume, Andres A1 - Huber, Anton A1 - Bronstert, Axel T1 - Runoff generation and soil erosion processes after clear cutting JF - Journal of geophysical research : Earth surface N2 - Timber harvesting by clear cutting is known to impose environmental impacts, including severe disturbance of the soil hydraulic properties which intensify the frequency and magnitude of surface runoff and soil erosion. However, it remains unanswered if harvest areas act as sources or sinks for runoff and soil erosion and whether such behavior operates in a steady state or evolves through time. For this purpose, 92 small-scale rainfall simulations of different intensities were carried out under pine plantation conditions and on two clear-cut harvest areas of different age. Nonparametrical Random Forest statistical models were set up to quantify the impact of environmental variables on the hydrological and erosion response. Regardless of the applied rainfall intensity, runoff always initiated first and yielded most under plantation cover. Counter to expectations, infiltration rates increased after logging activities. Once a threshold rainfall intensity of 20mm/h was exceeded, the younger harvest area started to act as a source for both runoff and erosion after connectivity was established, whereas it remained a sink under lower applied rainfall intensities. The results suggest that the impact of microtopography on surface runoff connectivity and water-repellent properties of the topsoil act as first-order controls for the hydrological and erosion processes in such environments. Fast rainfall-runoff response, sediment-discharge-hystereses, and enhanced postlogging groundwater recharge at catchment scale support our interpretation. At the end, we show the need to account for nonstationary hydrological and erosional behavior of harvest areas, a fact previously unappreciated in predictive models. KW - infiltration KW - runoff KW - erosion KW - connectivity KW - rainfall simulation KW - catchment Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20047 SN - 2169-9003 VL - 118 IS - 2 SP - 814 EP - 831 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Gräff, Thomas T1 - Soil moisture dynamics and soil moisture controlled runoff processes at different spatial scales : from observation to modelling T1 - Bodenfeuchtedynamik und deren Einfluss auf Abflussprozesse in unterschiedlichen Skalen : von der Beobachtung zur Modellierung N2 - Soil moisture is a key state variable that controls runoff formation, infiltration and partitioning of radiation into latent and sensible heat. However, the experimental characterisation of near surface soil moisture patterns and their controls on runoff formation remains a challenge. This subject was one aspect of the BMBF-funded OPAQUE project (operational discharge and flooding predictions in head catchments). As part of that project the focus of this dissertation is on: (1) testing the methodology and feasibility of the Spatial TDR technology in producing soil moisture profiles along TDR probes, including an inversion technique of the recorded signal in heterogeneous field soils, (2) the analysis of spatial variability and temporal dynamics of soil moisture at the field scale including field experiments and hydrological modelling, (3) the application of models of different complexity for understanding soil moisture dynamics and its importance for runoff generation as well as for improving the prediction of runoff volumes. To fulfil objective 1, several laboratory experiments were conducted to understand the influence of probe rod geometry and heterogeneities in the sampling volume under different wetness conditions. This includes a detailed analysis on how these error sources affect retrieval of soil moisture profiles in soils. Concerning objective 2 a sampling strategy of two TDR clusters installed in the head water of the Wilde Weißeritz catchment (Eastern Ore Mountains, Germany) was used to investigate how well “the catchment state” can be characterised by means of distributed soil moisture data observed at the field scale. A grassland site and a forested site both located on gentle slopes were instrumented with two Spatial TDR clusters that consist of up to 39 TDR probes. Process understanding was gained by modelling the interaction of evapotranspiration and soil moisture with the hydrological process model CATFLOW. A field scale irrigation experiment was carried out to investigate near subsurface processes at the hillslope scale. The interactions of soil moisture and runoff formation were analysed using discharge data from three nested catchments: the Becherbach with a size of 2 km², the Rehefeld catchment (17 km²) and the superordinate Ammelsdorf catchment (49 km²). Statistical analyses including observations of pre-event runoff, soil moisture and different rainfall characteristics were employed to predict stream flow volume. On the different scales a strong correlation between the average soil moisture and the runoff coefficients of rainfall-runoff events could be found, which almost explains equivalent variability as the pre-event runoff. Furthermore, there was a strong correlation between surface soil moisture and subsurface wetness with a hysteretic behaviour between runoff soil moisture. To fulfil objective 3 these findings were used in a generalised linear model (GLM) analysis which combines state variables describing the catchments antecedent wetness and variables describing the meteorological forcing in order to predict event runoff coefficients. GLM results were compared to simulations with the catchment model WaSiM ETH. Hereby were the model results of the GLMs always better than the simulations with WaSiM ETH. The GLM analysis indicated that the proposed sampling strategy of clustering TDR probes in typical functional units is a promising technique to explore soil moisture controls on runoff generation and can be an important link between the scales. Long term monitoring of such sites could yield valuable information for flood warning and forecasting by identifying critical soil moisture conditions for the former and providing a better representation of the initial moisture conditions for the latter. N2 - Abflussentwicklung, Infiltration und die Umverteilung von Strahlung in latenten und sensiblen Wärmestrom werden maßgeblich durch die Bodenfeuchte der vadosen Zone gesteuert. Trotz allem, gibt s wenig Arbeiten die sich mit der experimentellen Charakterisierung der Bodenfeuchteverteilung und ihre Auswirkung auf die Abflussbildung beschäftigen. Der Fokus dieser Dissertation wurde darauf ausgerichtet: (1) die Methode des Spatial TDR und deren Anwendbarkeit einschließlich der Inversion des TDR Signals in heterogenen Böden zu prüfen, (2) die Analyse der räumlichen und zeitlichen Dynamik der Bodenfeuchte auf der Feldskala einschließlich Feldexperimenten und hydrologischer Modellierung, (3) der Aufbau verschiedener Modellanwendungen unterschiedlicher Komplexität um die Bodenfeuchtedynamiken und die Abflussentwicklung zu verstehen und die Vorhersage des Abflussvolumens zu verbessern. Um die Zielsetzung 1 zu erreichen, wurden verschiedene Laborversuche durchgeführt. Hierbei wurde der Einfluss der Sondenstabgeometrie und verschiedener Heterogenitäten im Messvolumen bei verschiedenen Feuchtegehalten untersucht. Dies beinhaltete eine detaillierte Analyse wie diese Fehlerquellen die Inversion des Bodenfeuchteprofils beeinflussen. Betreffend der Zielsetzung 2, wurden 2 TDR-Cluster in den Quellgebieten der Wilden Weißeritz installiert (Osterzgebirge) und untersucht, wie gut der Gebietszustand mit räumlich hochaufgelösten Bodenfeuchtedaten der Feldskala charakterisiert werden kann. Um die Interaktion zwischen Evapotranspiration und Bodenfeuchte zu untersuchen wurde das hydrologische Prozessmodell CATFLOW angewendet. Ein Beregnungsversuch wurde durchgeführt um die Zwischenabflussprozesse auf der Hangskala zu verstehen. Die Interaktion zwischen Bodenfeuchte und Abflussentwicklung wurde anhand von drei einander zugeordneten Einzugsgebieten analysiert. Statistische Analysen unter Berücksichtigung von Basisabfluss, Bodenvorfeuchte und verschiedenen Niederschlagscharakteristika wurden verwendet, um auf das Abflussvolumen zu schließen. Auf den verschiedenen Skalen konnte eine hohe Korrelation zwischen der mittleren Bodenfeuchte und dem Abflussbeiwert der Einzelereignisse festgestellt werden. Hierbei konnte die Bodenfeuchte genauso viel Variabilität erklären wie der Basisabfluss. Im Hinblick auf Zielsetzung 3 wurden “Generalised liner models” (GLM) genutzt. Dabei wurden Prädiktorvariablen die den Gebietszustand beschreiben und solche die die Meteorologische Randbedingungen beschreiben genutzt um den Abflussbeiwert zu schätzen. Die Ergebnisse der GLMs wurden mit Simulationsergebnissen des hydrologischen Gebietsmodells WaSiM ETH verglichen. Hierbei haben die GLMs eindeutig bessere Ergebnisse geliefert gegenüber den WaSiM Simulationen. Die GLM Analysen haben aufgezeigt, dass die verwendete Messstrategie mehrerer TDR-Cluster in typischen funktionalen Einheiten eine viel versprechende Methode ist, um den Einfluss der Bodenfeuchte auf die Abflussentwicklung zu verstehen und ein Bindeglied zwischen den Skalen darstellen zu können. Langzeitbeobachtungen solcher Standorte sind in der Lage wichtige Zusatzinformationen bei der Hochwasserwarnung und -vorhersage zu liefern durch die Identifizierung kritischer Gebietszustände für erstere und eine bessere Repräsentation der Vorfeuchte für letztere. KW - Bodenfeuchte KW - TDR KW - Heterogenität KW - Einzugsgebiet KW - Gebietszustand KW - Soil moisture KW - TDR KW - heterogeneity KW - catchment KW - runoff KW - catchment state Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-54470 ER - TY - THES A1 - Wriedt, Gunter T1 - Modelling of nitrogen transport and turnover during soil and groundwater passage in a small lowland catchment of Northern Germany N2 - Stoffumsatzreaktionen und hydraulische Prozesse im Boden und Grundwasser können in Tieflandeinzugsgebieten zu einer Nitratretention führen. Die Untersuchung dieser Prozesse in Raum und Zeit kann mit Hilfe geeigneter Modelle erfolgen. Ziele dieser Arbeit sind: i) die Entwicklung eines geeigneten Modellansatzes durch Kombination von Teilmodellen zur Simulation des N-Transportes im Boden und Grundwasser von Tieflandeinzugsgebieten und ii) die Untersuchung von Wechselwirkungen zwischen Gebietseigenschaften und N-Transport unter besonderer Berücksichtigung der potentiellen N-Zufuhr in die Oberflächengewässer. Der Modellansatz basiert auf der Kombination verschiedener Teilmodelle: das Bodenwasser- und -stickstoffmodell mRISK-N, das Grundwassermodell MODFLOW und das Stofftransportmodell RT3D. Zur Untersuchung der Wechselwirkungen mit den Gebietseigenschaften muss die Verteilung und Verfügbarkeit von Reaktionspartnern berücksichtigt werden. Dazu wurde ein Reaktionsmodul entwickelt, welches chemische Prozesse im Grundwasser simuliert. Hierzu gehören die Mineralisation organischer Substanz durch Sauerstoff, Nitrat und Sulfat sowie die Pyritoxidation durch Sauerstoff und Nitrat. Der Modellansatz wurde in verschiedenen Einzelstudien angewandt, wobei jeweils bestimmte Teilmodelle im Vordergrund stehen. Alle Modellstudien basieren auf Daten aus dem Schaugrabeneinzugsgebiet (ca. 25 km²), in der Nähe von Osterburg(Altmark) im Norden Sachsen-Anhalts. Die folgenden Einzelstudien wurden durchgeführt: i) Evaluation des Bodenmodells anhand von Lysimeterdaten, ii) Modellierung eines Tracerexperimentes im Feldmaßstab als eine erste Anwendung des Reaktionsmoduls, iii) Untersuchung hydraulisch-chemischer Wechselwirkungen an einem 2D-Grundwassertransekt, iv) Flächenverteilte Modellierung von Grundwasserneubildung und Bodenstickstoffaustrag im Untersuchungsgebiet als Eingangsdaten für nachfolgende Grundwassersimulationen, und v) Untersuchung der Ausbreitung von Nitrat im Grundwasser und des Durchbruchs in die Oberflächengewässer im Untersuchungsgebiet auf Basis einer 3D-Modellierung von Grundwasserströmung und reaktivem Stofftransport. Die Modellstudien zeigen, dass der Modellansatz geeignet ist, die Wechselwirkungen zwischen Stofftransport und –umsatz und den hydraulisch-chemischen Gebietseigenschaften zu modellieren. Die Ausbreitung von Nitrat im Sediment wird wesentlich von der Verfügbarkeit reaktiver Substanzen sowie der Verweilzeit im Grundwasserleiter bestimmt. Bei der Simulation des Untersuchungsgebietes wurde erst nach 70 Jahren eine der gegebenen Eintragssitutation entsprechende Nitratkonzentration im Grundwasserzustrom zum Grabensystem erreicht (konservativer Transport). Die Berücksichtigung von reaktivem Stofftransport führt zu einer deutlichen Reduktion der Nitratkonzentrationen. Die Modellergebnisse zeigen, dass der Grundwasserzustrom die beobachtete Nitratbelastung im Grabensystem nicht erklären kann, da der Großteil des Nitrates durch Denitrifikation verloren geht. Andere Quellen, wie direkte Einträge oder Dränagenzuflüsse müssen ebenfalls in Betracht gezogen werden. Die Prognosefähigkeit des Modells für das Untersuchungsgebiet wird durch die Datenunsicherheiten und die Schätzung der Modellparameter eingeschränkt. Dennoch ist der Modellansatz eine wertvolle Hilfe bei der Identifizierung von belastungsrelevanten Teilflächen (Stoffquellen und -senken) sowie bei der Modellierung der Auswirkungen von Managementmaßnahmen oder Landnutzungsveränderungen auf Grundlage von Szenario-Simulationen. Der Modellansatz unterstützt auch die Interpretation von Beobachtungsdaten, da so die lokalen Informationen in einen räumlichen und zeitlichen Zusammenhang gestellt werden können. N2 - Chemical transformations and hydraulic processes in soil and groundwater often lead to an apparent retention of nitrate in lowland catchments. Models are needed to evaluate the interaction of these processes in space and time. The objectives of this study are i) to develop a specific modelling approach by combining selected modelling tools simulating N-transport and turnover in soils and groundwater of lowland catchments, ii) to study interactions between catchment properties and nitrogen transport. Special attention was paid to potential N-loads to surface waters. The modelling approach combines various submodels for water flow and solute transport in soil and groundwater: The soil-water- and nitrogen-model mRISK-N, the groundwater flow model MODFLOW and the solute transport model RT3D. In order to investigate interactions of N-transport and catchment characteristics, the distribution and availability of reaction partners have to be taken into account. Therefore, a special reaction-module is developed, which simulates various chemical processes in groundwater, such as the degradation of organic matter by oxygen, nitrate, sulphate or pyrite oxidation by oxygen and nitrate. The model approach is applied to different simulation, focussing on specific submodels. All simulation studies are based on field data from the Schaugraben catchment, a pleistocene catchment of approximately 25 km², close to Osterburg(Altmark) in the North of Saxony-Anhalt. The following modelling studies have been carried out: i) evaluation of the soil-water- and nitrogen-model based on lysimeter data, ii) modelling of a field scale tracer experiment on nitrate transport and turnover in the groundwater as a first application of the reaction module, iii) evaluation of interactions between hydraulic and chemical aquifer properties in a two-dimensional groundwater transect, iv) modelling of distributed groundwater recharge and soil nitrogen leaching in the study area, to be used as input data for subsequent groundwater simulations, v) study of groundwater nitrate distribution and nitrate breakthrough to the surface water system in the Schaugraben catchment area and a subcatchment, using three-dimensional modelling of reactive groundwater transport. The various model applications prove the model to be capable of simulating interactions between transport, turnover and hydraulic and chemical catchment properties. The distribution of nitrate in the sediment and the resulting loads to surface waters are strongly affected by the amount of reactive substances and by the residence time within the aquifer. In the Schaugraben catchment simulations, it is found that a period of 70 years is needed to raise the average seepage concentrations of nitrate to a level corresponding to the given input situation, if no reactions are considered. Under reactive transport conditions, nitrate concentrations are reduced effectively. Simulation results show that groundwater exfiltration does not contribute considerably to the nitrate pollution of surface waters, as most nitrate entering soils and groundwater is lost by denitrification. Additional sources, such as direct inputs or tile drains have to be taken into account to explain surface water loads. The prognostic value of the models for the study site is limited by uncertainties of input data and estimation of model parameters. Nevertheless, the modelling approach is a useful aid for the identification of source and sink areas of nitrate pollution as well as the investigation of system response to management measures or landuse changes with scenario simulations. The modelling approach assists in the interpretation of observed data, as it allows to integrate local observations into a spatial and temporal framework. KW - Stickstoff KW - Nitrat KW - Modellierung KW - Grundwasser KW - Einzugsgebiet KW - Reaktiver Stofftransport KW - Denitrifikation KW - Nitrogen KW - Nitrate KW - modelling KW - groundwater KW - catchment KW - reactive transport KW - denitrification Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001307 ER -